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Retrieval of Sea Level and Surface Loading Variations from Geodetic Observations
and Model Simulations: an Integrated Approach

Summary
The mass distribution in the system Earth changes dynamically over time. Time-variable mass
transport mainly arises from the interplay between the terrestrial hydrological water cycle, the
ocean and atmosphere, and the Earth’s cryosphere. To understand the dynamics of the system
Earth and its climate, it is of paramount importance to establish and maintain an accurate observa-
tional basis of these surface processes, against which models and theories can be tested.
A variety of observational techniques are used today. The time-variable gravity is measured from
space by the Gravity Recovery and Climate Experiment (GRACE), Earth deformation processes are
monitored by a permanent global network of GPS stations, and sea surface changes are detected by
a family of satellite altimeters. The underlying motivation of this work is that the combination of
the different observation types allows the mitigation of some of the technique-specific limitations.
In the framework of this dissertation, several types of geodetic observations have been combined in
a least-squares sense to estimate present-day changes of surface mass storage in the Earth system,
using dynamically consistent surface loading theory.
Two types of inversion schemes have been designed and implemented. In the first scheme, time
variable gravity from GRACE, deformations of a permanent GPS station network, and simulated
ocean bottom pressure changes from an ocean model, are used to estimate weekly surface load-
ing changes covering the entire globe. In the second inversion scheme, (inter-)annual changes of
the Earth’s cryosphere, ocean and terrestrial water cycle, are parameterized by a predefined set of
standing waves, whose time variations are estimated by combining GRACE gravimetry with satel-
lite altimetry from Jason-1 and Jason-2.

Ein kombinierter Ansatz zur Bestimmung von Meeresspiegelschwankungen und Auf-
lastsveränderungen aus geodätischen Beobachtungen und Modellsimulationen

Zusammenfassung
Die Verteilung der Massen im System Erde verändert sich dynamisch über die Zeit. Zeitvariable
Massentransporte entstehen vor allem durch das Zusammenspiel von terrestrischem hydrologis-
chem Wasserkreislauf, Cryosphäre, sowie Ozeanen und Atmosphäre. Das Verständis der Dynamik
des Systems Erde sowie damit im Zusammenhang stehender Klimaveränderungen erfordert ein
umfassendes Beobachtungssystem dieser Oberflächenprozesse, gegen welches Modelle und Theo-
rien getestet werden können.

Heutzutage gibt es eine Vielzahl von Erdbeobachtungstechniken. Das zeitvariable Gravitations-
feld wird aus dem Weltall durch die GRACE-Mission (Gravity Recovery and Climate Experiment)
vermessen. Deformationsprozesse der Erdoberfläche können mit Hilfe eines globalen Netzwerkes
permanenter GPS-Stationen überwacht und Änderungen der Meeresoberfläche von Altimetersatel-
liten detektiert werden. Dieser Arbeit liegt die Motivation zugrunde, dass die Kombination ver-
schiedener Beobachtungstypen die technisch-spezifischen Einschränkungen einzelner Beobachtung-
stechniken verringern kann. Im Rahmen der vorliegenden Dissertation werden verschiedene geo-
dätische Beobachtungen in einem Kleinste-Quadrate Ansatz kombiniert, um unter Ausnutzung
einer dynamisch konsistenten Auflasttheorie die heutigen Veränderungen der Oberflächenspeicher
im Erdsystem zu bestimmen.

Zwei verschiedene Inversionsschemata wurden dazu entworfen und implementiert. In einem er-
sten Schema werden zeitvariable Schwerefelder von GRACE, Deformationen eines Netzwerkes per-
manenter GPS-Stationen und durch ein Ozeanmodell simulierte Ozeanbodendruckvariationen ver-
wendet, um wöchentliche Auflastveränderungen für die gesamte Erde zu bestimmen. Im zweiten
Inversionsschema werden (inter-)annuale Veränderungen von Cryosphäre, Ozean und terrestri-
schem Wasserkreislauf durch einen vordefinierten Satz stehender Wellen parametrisiert, deren Zeit-
variationen aus einer Kombination von GRACE und Altimetriebeobachtungen der Satelliten Jason-
1 und Jason-2 geschätzt werden.
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1 Introduction

1.1 Motivation and Objectives

On Earth, everything moves. Air and water are carried through the atmosphere and ocean
by currents. And over land, precipitation and rivers participate in the endless hydrologi-
cal watercycle. On geological timescales, even the firm foundation we stand on does not
remain in place. Mantle convection causes the tectonic plates to drift, and the Earth’s crust
is still rebounding back into place in response to the massive ice loads from the last glacial
maximum.

A major force in all these phenomena is the gravity field as generated by the Earth.
Clearly, since the gravitational field of the Earth will change once masses move from A
to B, it makes sense to closely monitor gravity. Measuring gravity is one of the key aspects
of geodesy. In addition, the shape of the Earth and its orientation in space are also impor-
tant observables used in the field of geodesy.

Now measuring is one thing, but modelling (and ultimately predicting) is another. Many
aspects of the system Earth can be modelled and its physics understood. Capable general
circulation models of the ocean and atmosphere exist, and hydrological models are able to
model important aspects of the watercycle. However, remaining shortcomings are present
in the models. For example, when adding the land, ocean and atmospheric masses from
the models, one will find that they will not conserve mass on a global scale.

Combining the best of the measuring and observing world is that what provides valuable
insights. Afterall, without models, a geodesist will have a lot of trouble explaining what
part of the measurement is noise and what part is signal. And without measurements, a
modeller has no way of saying whether his model has any relation to what is happening
on the actual Earth.

From an observational perspective, it makes sense to use measurements from multiple
techniques to estimate geophysical parameters in inverse problems. Shortcomings in one
technique are often compensated by the strength of another. Furthermore, the estimated
parameters from joint inversions are generally associated with an increased accuracy. The
above idea is fundamental to my work and may be put into the form of a working hypoth-
esis:

The combination of existing geodetic observations in joint inversions can significantly improve
the current accuracy and separability of surface loading phenomena, compared to single-technique
inversions.

3



1 Introduction

My original contribution to this exciting and dynamic research field consequently con-
sists of the design and implementation of a multi-sensor inverse methodology, solving
for surface mass loads and sea level, using data from satellite gravimetry, altimetry, GPS-
derived network deformations and simulated ocean bottom pressure. More specifically, I
consistently combine different and complementary types of data by invoking a range of
dynamical theories such as mass conservation, response of the passive ocean, surface load-
ing on a SNREI Earth, and reference frame theory. I demonstrate that, without the need for
assimilating the data in a (yet to be build) ’complete’ Earth system model, the joint inver-
sion results have more added value, compared to the situation where all the data types are
considered as isolated entities.

Like many geophysical inverse problems, the inverse problems in this thesis are either
severely or, in the best case, weakly ill-posed. Each observational type is sensitive to partic-
ular combinations of the parameters. To enable the computation of meaningful solutions, I
designed new methods which mitigate the ill-posedness at hand.

The results of the joint inversions shed more light on a wide spectrum of contemporary
changes in the system Earth, ranging from the terrestrial hydrological water cycle, conti-
nental ice mass changes to global and regional sea level induced by mass transport and
thermo- and halo-steric expansion/contraction.

Two types of joint inversions are considered in this thesis. The first inversion type,
schematically depicted in Fig. 1.1, combines time-variable gravity from the Gravity Re-
covery and Climate Experiment (GRACE), GPS derived network deformations and ocean
bottom pressure from a global ocean model. The most important sought-for parameters
in this inversion are weekly changes of surface loading, expressed as spherical harmonic
coefficients. The green textboxes of Fig. 1.1 describe the external data, which are entering
the processing chains of this thesis. The original contribution of this work is enclosed in
the blue boxes. They contain the tasks for which methods have been developed and imple-
mented.

The schematics of the second type of inversion, where GRACE data and measurements
from radar altimetry are combined, can be found in Fig. 1.2. Compared to the first inversion
type, where a generic surface load is parametrized in spherical harmonic coefficients, the
solution space is much more restricted. Only a limited amount of geophysical effects (e.g.
a mass change in a certain drainage basin in Greenland or Antarctica) are parametrized
by time series (the sought-for parameters), multiplied by time-invariant spatial patterns,
which are determined beforehand from auxiliary data.

In previous years, I published early versions of methods and results of this thesis work in
journal papers. The results of a joint inversion, using GRACE, GPS derived network defor-
mations from the IGS (International GNSS Service), and simulated ocean bottom pressure
was published in Rietbroek et al. (2009). In Rietbroek et al. (2012b), reprocessed GPS data
were introduced in the form of normal equation systems, and an improved ocean model
with updated errors was used. Just recently, a paper has been accepted (Rietbroek et al.,
2014), which concerns the use of GPS network deformations to bridge the gap which is
expected at the approaching end of life of the (aging) GRACE mission.
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Figure 1.1: Inversion scheme of the weekly global surface loading inversion. The numbers
in the brackets denote the relevant section numbers in this thesis. The gray shaded ar-
eas delimit the work performed in this thesis. Abbreviations: NEQs (normal equation
systems), HEN (Height, East, North ), OBP (ocean bottom pressure), FESOM (Finite El-
ement Sea-Ice Model), VCE (Variance Component Estimation), EOP (Earth Orientation
Parameters).
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Figure 1.2: As in Fig. 1.1, but now for the ’fingerprint’ inversion. Abbreviations: TWS (total
water storage), PCA (principal component analysis).
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1.1 Motivation and Objectives

The methodology concerning the alternative joint inversion, using predefined patterns,
whose time varying scales are fitted against GRACE and altimetry has been published in
Rietbroek et al. (2012a). The corresponding data and software provided the basis for the
study of Jensen et al. (2013). Along track Jason-1 and Jason-2 residuals, after removing the
signal from a joint GRACE+Jason inversion, have been studied in Rietbroek et al. (2012c).

Besides the already published results, this thesis covers several newly developed meth-
ods and algorithms, utilizes updated datasets, offers new interpretations, and provides a
more comprehensive review of the techniques used.

For example, the newest GRACE-GFZ data (release 05) are now used in the inversion
schemes. Furthermore, to improve the relative weighting of the different observational
groups, Variance Component Estimation (VCE) has now been used. Using this technique,
observational groups are also weighted based on their posterior fit, in addition to their rel-
ative error-covariance. Newly reprocessed GPS network solutions have been fed into the
inversions. And ocean model data has now been incorporated which have been computed
on a denser and tuned finite element grid. Concerning GPS-only inversions, a new regu-
larization method is described in this thesis, which serves to constrain the solution over the
ocean towards an equipotential surface, instead of a zero-valued surface as in Kusche and
Schrama (2005).

Also new is, that the patterns, used in the GRACE-altimetry inversion, have been up-
dated. Besides a different realization of the Antarctic drainage divides, five GIA (glacial
isostatic adjustment) patterns are now used instead of one. Furthermore, a new method
for computing additional steric patterns from the altimetry residuals has been developed.
On the altimeter side, parameters were introduced to absorb network errors in the altime-
ter frames, and an ocean/atmosphere background model has been subtracted a priori. An
inter-drainage basin constraint has been designed, which suppresses spurious correlations
between small basins, while the common mass changes of the basins are still freely es-
timable.

The remainder of the introduction highlights the themes which inspired this thesis work.
It covers the most relevant previous research, and several methodological milestones which
are important. Chapter 2 provides the geophysical framework, linking all relevant observ-
ables using surface loading and frame theory. Chapter 3 discusses the characteristics of
the relevant observations, and explains the preprocessing steps applied. The two inversion
schemes are then elaborated upon in Chapter 4. It covers the used observation equations,
nuisance parameters, and discusses the obtainable accuracies and stability of the inversion
schemes. Some results from the joint inversions are then discussed and compared in Chap-
ter 5. The chapter serves to illustrate the quality and usefulness of the inversion schemes,
but is by no means comprehensive, as the estimated data can be used in a variety of other
applications. Finally, main conclusions are drawn on the usefulness of the joint inversion
scheme, and recommendations for future schemes are provided.
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1.2 Time Variable Gravity from GRACE

Time variable gravity plays a crucial role in this thesis. With the exception of the volumetric
sea level changes, all observables discussed in this thesis can be linked to the changes in the
gravity field. For that reason, the space-borne Gravity Recovery and Climate Experiment
(GRACE), supplies the most important observational constraints in this thesis.

Launched in 2002, the GRACE mission stood at the base of a steady sequence of discov-
eries. Hydrological variations have already been monitored at an early stage (Tapley et al.,
2004), and the 2004 Sumatra-Andaman Earthquake was also seen by the twin mission (Han
et al., 2006). Large scale mass variations in the ocean were discovered (Chambers et al.,
2004), and validated against in situ bottom pressure recorders (Rietbroek et al., 2006). Fur-
thermore, significant ice mass losses in Greenland and Antarctica were detected (Velicogna
and Wahr, 2006a,b). Concerning groundwater changes, Rodell et al. (2009) found that large
scale anthropogenic water use in India had been observed by GRACE.

In order to extract useful results from the level 2 GRACE products, a filtering step is
commonly applied. Due to the measurement geometry of GRACE, strong correlated errors
exist in these products. These errors have been decreasing with the releases, but cannot
be completely eliminated. A whole family of filters has been developed over the years,
which are either isotropic (e.g. Wahr et al., 1998) or anisotropic and designed specifically
for GRACE (e.g. Swenson and Wahr, 2006; Kusche, 2007; Kusche et al., 2009; Wouters and
Schrama, 2007).

1.3 Using the Earth’s Crust as a Scale

On short timescales, the solid part of the Earth responds elastically to changing surface
loads. These deformation responses can be approximated using a spherically symmetric
non-rotating elastic isotropic Earth model (Farrell, 1972). As will be shown later in Sec.
2.2.2, 1-dimensional Earth models yield elegant relations between the surface load and the
deformation response, which makes geodetic observations of the Earth’s crustal movement
suitable candidates for the retrieval of time varying surface loading signals.

Using deformations from permanent GPS stations, seasonal loading signals in the Ama-
zon have been detected (Davis et al., 2004). van Dam et al. (2007) concluded that errors in
GPS processing were still masking the seasonal hydrological cycle in Europe. Using im-
proved GPS processing, Tregoning et al. (2009) found a better agreement between GRACE
derived surface deformation and GPS network changes. Furthermore, Jiang et al. (2010)
found that the deformation patterns, associated with the accelerating mass loss in Green-
land were confirmed by GPS stations in the North Atlantic.

When formulated as an inverse problem, large scale surface loading have been inferred
from GPS data by Wu et al. (2002), Blewitt and Clarke (2003), and Kusche and Schrama
(2005). The retrieval of global surface loading from GPS data only is difficult as the distri-
bution of the permanent GPS stations exhibit large uncovered regions in for example the
ocean domain. Furthermore, isolated GPS stations with erroneous values may potentially
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1.4 Geocenter Motion

contaminate the solution in large regions (van Loon, 2008).

Kusche and Schrama (2005) also provided a framework for the joint inversion of sur-
face loading from GRACE data and GPS network deformations. Wu et al. (2006) combined
GRACE data with GPS network deformations and also added modelled ocean bottom pres-
sure from the ECCO model to solve for surface loading in a joint inversion. Jansen et al.
(2009) provided a sensitivity study for such inversions, investigating the influence of the
GPS station distribution, and the used ocean model grid. Joint inversions with real data
have been described in Rietbroek et al. (2009, 2012b).

Focusing on secular behavior, Wu et al. (2010), separated GIA induced variations from
present day surface loading trends using GPS, GRACE and modelled OBP. Their inverse
problem is in particular challenging and requires a variety of constraints which have been
imposed to stabilize the solution. Nevertheless, such multi-sensor inversions are expected
to play an increasingly important role in the near future.

1.4 Geocenter Motion

The surface loading inversions from this study inherently lead to a discussion of observa-
tional reference frames. For that reason, the dynamical theory associated with geocenter
motion is extensively elaborated upon in this thesis (see Sec. 2.3).

Applying surface loading theory in combination with the conservation of linear momen-
tum, Trupin et al. (1992) studied the effect of glacier melting on the displacement of the
center of mass of the Earth system from the center of mass of the solid Earth. Geocenter
motion associated with the atmosphere, ocean and hydrology were quantified by Dong
et al. (1997), from geophysical models.

These, mostly seasonal, variations have been detected using GPS network solutions (Ble-
witt et al., 2001). Other satellite tracking techniques such as Satellite Laser Ranging (SLR)
and DORIS have also shown to yield geophysically induced geocenter motion (Eanes et al.,
1997; Chen et al., 1999; Bouillé et al., 2000; Crétaux et al., 2002; Feissel-Vernier et al., 2006;
Cheng et al., 2010).

The inter-satellite ranging measurements of GRACE are principally insensitive to geo-
center motion, as they represent a relative measure between two satellites in the same ref-
erence frame. The reference frame origin of the GRACE gravity fields is set to the center of
mass of the Earth system. In this frame of reference, only the combined effect of the mass
center of the solid part of the Earth, and the mass of the the fluid envelope of the Earth
can be detected. Consequently, in this frame of reference, the inversion of surface loading
variations from the gravity field is essentially a singular problem (see Sec. 5.1.1), which is
still a cause of confusion among many. A possible way out of this caveat is to use auxiliary
information from an ocean model, together with GIA-corrected GRACE, to estimate the
present day geocenter motion (Swenson et al., 2008).
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Many geocenter motion estimates are derived from a geometrical approach. This means
that the tracking network is assumed to be rigid, possibly drifting, and the computed geo-
center motion is representative for the motion of the center of mass of the Earth relative to
the geometrical center of network1. Over time however, the network also deforms due to
surface loading effects, which can alias into the estimates (Lavallée et al., 2006; Collilieux
et al., 2009). Furthermore, technique specific errors (e.g. from pressure radiation mod-
elling) may leak into the computed geocenter motion (Fritsche et al., 2009).

Besides the center of mass of the Earth system, there are other frame origins which are
independent of the used network and can be mathematically described as functions of the
surface deformations or gravity. Well known, are for example the mass center of the solid
Earth (excluding the surface load), and the center of (surface) figure. Blewitt (2003) de-
scribed methods to transform geodetic observables between these frames.

The frame theory opens up possibilities to solve for surface loading where the rigid net-
work assumption can be abandoned (the deformation approach). For the GPS network, the
difference between approaches have been studied by Collilieux et al. (2011b).

For visco-elastic loading problems, which are important for the study of glacial isostatic
adjustment, the frame theory can be extended (see also Sec. 2.3.7 and Wu et al., 2012 for a
review). Klemann and Martinec (2009) showed for example that the chosen lower mantle
viscosity heavily influences the magnitude of the secular geocenter motion, while its ori-
entation is less affected. The trends in the Z direction are important for the mass trends
on the Antarctic continent. Wu et al. (2010) estimated this component to be -0.16 mm/yr,
which causes an apparent mass trend in Antarctica of 13 Gt/yr, when ignored. Other esti-
mates (e.g. this work, Rietbroek et al., 2012a; Schrama et al., 2014) also indicate significantly
larger present day mass components.

1.5 Sea Level Change

Eustatic Sea Level Change
Averaged over the ocean, the current eustatic sea level rise over the last two decades is
estimated to be around 3.3 mm/yr (Cazenave and Llovel, 2010). This estimate comprises
volume (or steric) changes due to variations in salinity and temperature, but equally im-
portant are mass induced changes from melting glaciers, ice sheets and terrestrial water
storage (Miller and Douglas, 2004). Furthermore, there are significant contributions in the
observed sea level which can be attributed to inter-annual variability (Church and White,
2011). A prime example is the El Niño La Niña cycle, which has profound effect on sea
level on inter-annual time scales (Böning et al., 2012). Consequently, different time inter-
vals yield different eustatic sea level rates.

Historically, tide gauges have been used to measure tides in harbors. When long enough
time series are available, one can use it to compute local tide tables. After removing the
harmonic tides a useful residual is left which also shows long term variations in sea level.

1or vice versa depending on the used definition of the geocenter motion
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Although accurate historical tide gauges are sparsely located over the globe, one can still
use these to compute the sea level change over the last century (Church and White, 2006).
They found not only that over the last 134 years (1870-2004) sea level rose by 1.7±0.3 mm/yr,
but that it also displayed an acceleration of about 0.013±0.006 mm/yr2. It must be noted
however that these historical sea level reconstructions were only possible since the ad-
vent of satellite radar altimetry in the 1990’s, which provided important constraints in the
spatial domain. These spatial constraints are necessary to correct the tide gauge data for
non-eustatic sea level change. Consequently, the lack of sufficient spatial information be-
fore the satellite altimetry era, and the heterogeneous spatial coverage of the tide gauges,
cause larger errors in the earlier epochs.

Steric variations can be inferred from measured temperature and salinity profiles in the
ocean (see section 2.5). Traditionally, those measurements mostly came from shipborne
XBT (eXpendable BathyThermograph) and CTD (Conductivity Temperature Depth). Re-
cently, a steadily growing array of freely drifting automated floats (ARGO), additionally
samples the ocean. The retrieval of long term trends from these data is not a trivial task,
and the sampling is mainly restricted to the upper 1000 m of the ocean.

With the advent of satellite gravimetry and altimetry, a new way to compute steric sea
level variations has been possible. Steric variations can be computed by subtracting the
mass induced sea level from GRACE from the total sea level from altimetry. Early esti-
mates, in terms of global mean sea level, were studied in Lombard et al. (2007). They
compared their steric sea level estimates with those derived from ARGO data and found
that the ARGO estimates showed unrealistic cooling from 2003 and onward. Similar cool-
ing events in the ARGO data have been found by (Lyman et al., 2006). The issue has been
addressed in the meanwhile, and the exaggerated cooling was found to be caused by biases
in the ARGO and XBT data (Willis et al., 2008; Lyman et al., 2010).

The ocean plays a dominant role in the Earth’s climate system. From the observed radi-
ation imbalance at the Earth’s surface more than 90% of the excess heat is absorbed by the
ocean (see Bindoff et al., 2007 and the upcoming fifth assessment report of the Intergovern-
mental panel on climate change). Although the ocean heat content increase is consistent
with the observed radiation imbalance of the Earth, large uncertainties still remain in its
estimates (Loeb et al., 2012). To complicate matters further, the deeper part of the ocean
is very poorly sampled. Based on a non-Boussinesq model Song and Colberg (2011) sug-
gested that deep ocean warming may contribute up to 1 mm/yr. In fact, as will be shown
later by the inversion results in Sec. 5.2.1, such trends are in fact not inconsistent with the
results from this work.

In addition to steric variations, mass fluxes in and out of the ocean contribute to sea level
changes. The ice sheets on Greenland and Antarctica are melting at alarming rates. Melting
estimates, obtained from satellite gravimetry, of the melting in Greenland are in the order
of 200 Gt/yr (0.5 mm/yr of eustatic sea level rise, Schrama and Wouters, 2011; Wouters et al.,
2008), although this rate is increasing steadily (Velicogna and Wahr, 2006a). In Antarctica,
significant melting is ongoing and shows strong inter-annual variations (Velicogna, 2009;
Horwath et al., 2012). Most of the melting is occurring in the West Antarctic and on the
Antarctic Peninsula. For example, Sasgen et al. (2010) found melting rates varying from
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91 Gt/yr to 117 Gt/yr depending on the measurement techniques (GRACE Gravimetry versus
InSAR) and time span (0.25-0.31 mm/yr of sea level rise).

Although their total ice volume is smaller than that of the ice sheets, land glaciers also
contribute significantly to sea level rise (Meier et al., 2007; Cogley, 2009). Using direct and
geodetic measurements Cogley (2009) suggested that land glaciers contribute to sea level
rise with 1.1 - 1.4 mm/yr. The available measurements are however very sparse in both time
and space. Using the GRACE mission a significant smaller contribution of 0.4 mm/yr was
estimated by Jacob et al. (2012) for the period 2003-2010.

Continental water storage change also affect sea level. Llovel et al. (2010) estimated a
negative contribution to sea level of -0.22±0.05 mm/yr. Riva et al. (2010) also found a nega-
tive (but not significant) trend of -0.1±0.3 mm/yr. A negative trend of -0.20±0.04 mm/yr was
also confirmed by Jensen et al. (2013).

When discussing sea level change, one has to appreciate the difference between geocentric
and relative sea level. Relative sea level, is the column of water relative to the Earth’s crust,
while geocentric sea level is essentially the geoid change augmented with a uniform layer
ensuring the conservation of mass globally. While all elastic loading effects cause changes
between the relative and geocentric sea level, the largest difference between the relative
and the geocentric sea level is caused by glacial isostatic adjustment (GIA). Roughly speak-
ing, this effect causes mantle material to gradually flow back to the regions of the former
ice sheets (e.g. Laurentide and Fennoscandia). In the ocean domain, this is consequently
accompanied by an overall lowering of the ocean floor. For that reason, a GIA correction
of 0.3 mm/yr from Douglas and Peltier (2002) is usually added to the mean sea level changes
from altimetry.

Several authors have attempted to close the total sea level budget using satellite altimetry
(measuring total sea level), data from ARGO floats (measuring steric sea level) and GRACE
gravimetry (measuring mass related sea level). Willis et al. (2008) found strongly diverging
curves of the measured and inferred sea level components (steric, mass and total sea level).
However, using virtually the same data, Leuliette and Miller (2009) found a much better
agreement. The largest disagreement was actually found in the ARGO derived steric sea
level, which pointed to differences in the ARGO interpolation schemes used.

Regional Sea Level Change
A closer look at these satellite data reveals that sea level changes are all but uniform over
the ocean (see Fig. 1.3). This has several causes. On the one hand, temperature and salin-
ity changes differ greatly depending on the region and climate regimes. Consequently, the
associated volumetric (steric) sea level changes display considerable regional variations.
On the other hand, the meltwater from ice sheets and glaciers originate from locally con-
centrated sources. Although counter-intuitive at first glance, the sea level actually tends to
drop for locations in the direct vicinity of these melting sources. This effect is caused by the
lowering of the regional geoid due to the removal of the local ice masses and is even further
enhanced by the elastic rebound of the Earth’s crust, which is being relaxed as the ice melts.
As mass is conserved on a global scale, this will lead to larger than average sea level rise
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Figure 1.3: Along track sea level trends (period from 2003-2009), as seen by the Jason-1
altimeter. Tide gauge locations from the PSMSL database are superimposed on the map,
and grouped per observation epoch.

far away from the melt sources. The physics behind these problems is well understood,
and the ocean response due to a spatially predefined load can be computed accordingly
(Mitrovica et al., 2001; Riva et al., 2010; Rietbroek et al., 2012a). With regard to future sea
level rise projections, this effect has only recently been considered, and was found to cause
significant regional variations (Slangen et al., 2012). The theory of the self-consistent sea
level response is treated in section 2.4.

The non-uniform responses of the ocean, actually open up opportunities to separate dif-
ferent sea level contributions based on their spatial characteristic or ’fingerprint’. Plag and
Jüttner (2001) tried to separate contributions from Greenland and Antarctica by fitting self
consistent sea level responses to tide gauge measurements. They found that the inverse
problem using tide gauges was highly ill-posed, and no realistic estimates could be ob-
tained. This ’fingerprint’ inversion approach is however a very attractive one, as it allows
the decomposition of the various contributors to sea level. With a similar approach, data
from GRACE has already been successfully decomposed in different mass contributions
(Schmeer et al., 2012). For these reasons, such a fingerprint inversion, based on much more
extensive GRACE data and altimetry, is pursued in this thesis.
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2 Gravity, Surface Loading and Sea Level

The changing gravitational field and surface loading phenomena such as sea level rise are
strongly interconnected. The observed gravity at a certain point is caused by the gravita-
tional pull of all mass-compartments together. Consequently, moving mass, let it be ice,
water, air, tectonic plates or mantle material, will all cause tiny changes in the gravitational
field.

Many of the mass movements will also indirectly cause changes in the geometrical shape
of the Earth and the sea surface. On long time scales, tectonic plate movement and man-
tle upwelling have shaped the topography. On shorter time scales, ranging from decades
to weeks, ice and water masses deform the solid part of the Earth. Today, the land sur-
face is still rebounding from the loading of the ice sheets from the last glacial periods.
Furthermore, the global terrestrial water cycle causes strong annual and sub-annual mass
movements, which are consequently deforming the Earth, through the loads exerted on
the surface. On the shortest timescales, mainly ranging from weeks to hours one finds the
effect of the moon and other astronomical bodies in the form of solid Earth and ocean tides.

A changing geometrical shape of the Earth or the sea surface can also have causes, which
are not caused by mass movement. For example, the thermal expansion of sea water due to
seasonal and long term warming is associated with the so called steric sea level. Further-
more, the compaction of snow on top of ice sheets can change the thickness of the ice sheet
without changing its mass.

This chapter describes the mathematical/physical relationship between several observ-
ables, which are used in this work.

2.1 The Earth’s Gravity Field

The distribution of masses in the (non-rotating) Earth system will cause a gravitational
potential field φ

φ(r) = G
∮

Vearth

ρ(v′)
|r− r’|dv′. (2.1)

In words, each volume element, dv′, with local density ρ contributes to the potential at po-
sition r.

Exterior of the Earth’s mass, the gravitational potential satisfies the Laplace equation:

∇2φ = 0. (2.2)
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2.1 The Earth’s Gravity Field

The analytical solution of the Laplace equation can be conveniently expressed in terms
of spherical harmonic base functions:

φ(λ, θ, r) =
GM

a

∞

∑
n=0

n

∑
m=−n

( a
r

)n+1
CnmȲnm(λ, θ). (2.3)

Here, a denotes the mean radius of the Earth, whereas G is the gravitational constant
which is multiplied by the mass of the Earth (M). The dimensionless and normalized
Stokes coefficients, Cnm, describe the gravitational field of the Earth in terms of the spectral
degree and order n and m. The normalized base functions, Ȳnm, are evaluated at co-latitude
θ, longitude λ and radius r and depend on the associated Legendre function Pnm

1

Ȳnm(λ, θ) =

{
NnmPnm(cos θ) cos mλ, m ≥ 0

Nn|m|Pn|m|(cos θ) sin |m|λ, m < 0 . (2.4)

Where a normalization factor Nnm is applied:

Nnm =

√
(2− δ0m)(2n + 1)

(n−m)!
(n + m)!

. (2.5)

The applied normalization is that which is commonly used in geodesy, based on the
following orthogonality relation:∮

Ω
Ȳnm(ω)Ȳn′m′(ω)dω = 4πδnn′δmm′ . (2.6)

The integral is evaluated over the unit sphere, which is denoted by Ω.

The largest component of φ is the central degree 0 term, followed by the ellipsoidal flat-
tening manifesting itself in the C20 coefficient. In addition, on the Earth, rotating with an-
gular speed ΩE, a centrifugal potential will arise. When the Z-axis of the chosen reference
frame if perfectly aligned with the rotation axis one can describe the centrifugal potential
as

Λ(r, θ) =
1
2

Ω2
E(r sin θ)2. (2.7)

In the absence of currents and other dynamics, the ocean’s shape will have adjusted itself
to an equipotential surface. This is commonly referred to as the geoid, N, and its height
above an ellipsoid can be approximated by Bruns’s formula (e.g. Heiskanen and Moritz,
1967)

N =
φ + Λ− Ũ

γ
. (2.8)

The potential Ũ is the normal potential of the ellipsoid (e.g. GRS80), including the centrifu-
gal potential, Λ. The associated normal gravity acceleration is denoted by γ

In this thesis, the primary focus lies on time-variable deviations from the steady state
situation, so the normal potential Ũ is commonly replaced by a multi year mean gravity
field, yielding associated geoid perturbations δN.

1no Condon-Shortly Phase applied
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2 Gravity, Surface Loading and Sea Level

2.2 Surface Loading

2.2.1 Thin Shell Approximation of a Surface Load

Even when the gravitational potential outside a body is perfectly known, it is still impossi-
ble to uniquely determine the mass distribution inside the body (there exist infinitely many
mass distributions all yielding the same external gravity field). In the case of the Earth, one
may however make assumptions which allow linking potential changes to mass changes.

Most of the changes in the time-variable gravity originate from movements of water
and air, which occur close to or on the surface of the Earth. In other words, one may
approximate the region where the mass changes are occurring as a thin shell having the
Earth’s radius. For a spherical thin shell, Eq. 2.1 may be adapted to compute the potential
changes as

δφ(r) = G
∮
|r′|=a

σ(ω′)

|r− r’| a
2dω′. (2.9)

Figure 2.1: Graphical representa-
tion of the potential changes as
induced by a spherical shell.
The thickness of the shell is
vanishingly small, compared to
the Earth’s radius.

ρe

σ(θ',λ')

δΦ(r,θ,λ)
r-r'

a
r

Here, the surface density σ is given in kg/m2. The reciprocal of |r− r’| may be written as
an infinite series of (unnormalized) Legendre polynomials, Pn, as a function of the relative
angle α between r and r’:

1
|r− r’| =

∞

∑
n=0

|r’|n
|r|n+1 Pn(cos α), for|r| ≥ |r’|. (2.10)

The addition theorem may be used such that the dependency on co-latitude (θ) and longi-
tude (λ) is introduced according to

Pn(cos α) =
1

2n + 1

n

∑
m=−n

Ȳnm(λ, θ)Ȳnm(λ
′, θ′). (2.11)

It is convenient to expand the surface density variations, σ, in surface spherical harmon-
ics:

σ(λ, θ) = aρw

∞

∑
n=0

n

∑
m=−n

TnmȲnm(λ, θ). (2.12)
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2.2 Surface Loading

The spherical harmonic coefficients of the surface density, Tnm, are dimensionless. The
average density of seawater, usually taken as 1025 kg/m3, is denoted by ρw.

Eqs. 2.10-2.12 can now be substituted in Eq. 2.9. In this case, most of the integrals will be
zero-valued as a consequence of the orthogonality relation 2.6. The vector magnitudes |r’|
and |r|may be simplified to the scalars a and r respectively. The result is a double sum

δφ(r) = 4πGρwa3
∞

∑
n=0

n

∑
m=−n

1
2n + 1

an

rn+1 TnmȲnm(λ, θ). (2.13)

A further simplification can be made by introducing the mean density of the Earth ρe=
3M/(4πa3) (adopted value ρe=5517 kg/m3)

δφ(r) =
GM

a

∞

∑
n=0

n

∑
m=−n

1
2n + 1

3ρw

ρe

( a
r

)n+1
TnmȲnm(λ, θ). (2.14)

Analogous to Eq. 2.3, Eq. 2.14 can be written in terms of anomalous Stokes coefficients,
δCr

nm

δφ(r) =
GM

a

∞

∑
n=0

n

∑
m=−n

( a
r

)n+1
δCr

nmȲnm(λ, θ), (2.15)

where
δCr

nm =
1

2n + 1
3ρw

ρe
Tnm. (2.16)

The superscript r, denotes the potential change for the case when the solid part of the
Earth is rigid. In practice, the Earth deforms (elastically) when a surface load is applied
to it. The associated potential changes and Earth deformations are described in the next
section.

2.2.2 Deformation of the Elastic Earth

Since the Earth is not a rigid sphere, its shape will change in time under past and present
loads. At location r, a general deformation can be described with a vector field

D(r) = ∇φ(r) +∇× Γ(r)r +∇× (∇× Ξ(r)r) . (2.17)

Here, Helmholtz’s theorem has been used to decompose the vector field into a curl-free
(Spheroidal) component, ∇φ, and in two divergence-less (incompressible) components.
The latter terms are referred to as ’toroidal’ and ’poloidal’ and are associated with the scalar
fields Γ, and Ξ respectively.

Under good approximation, one may assume that the Earth is a SNREI (Spherically-
symmetric Non-rotating Elastic Isotropic) body (Pagiatakis, 1990). For tidally induced
ocean loading, the neglection of anisotropy typically accounts for a few percent (Pagiatakis,
1990). Love (1909) suggested a solution for the deformation of a radially symmetric Earth,
induced by a unit point load. He postulated that the deformation response must also be ax-
ially symmetric, which is now commonly known as the Love-Shida hypothesis. Assuming
the radial symmetry of the Earth, and the boundary conditions at the (stress-free) surface,
the deformation then only contains a radial (U) and a tangential (V) component and the
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2 Gravity, Surface Loading and Sea Level

spheroidal and poloidal modes of D are coupled. As a result, the Earth’s response to an
axis-symmetrical surface load (Farrell, 1972) can be described as

D̂(r, α) =
∞

∑
n=0

[
Un(r)Pn(cos α)er + Vn(r)

dPn(cos α)

dα
eα

]
, (2.18)

where the ’ˆ’ indicates that the deformation obeys the Love-shida hypothesis. The de-
formed Earth additionally generates a distorted geoid

N(α) =
∞

∑
n=0

φn(a)
g

Pn(cos α), (2.19)

where the mean gravity is denoted by g.
In the remainder of the chapter, the deformation at the Earth’s surface is discussed. For

ease of reading, the radial dependency (r = a) is subsequently omitted from the notation.
At the surface of the Earth2, the scalars Un, Vn and φn are computed using a Love number
formalism (Farrell, 1972) Un

Vn
φn

 = φ′n


h′n
g
l′n
g

1 + k′n

 . (2.20)

Here, the direct potential change of the load is indicated by φ′n. The mechanical properties
of the Earth are reflected in the, degree dependent, dimensionless load ’Love numbers’, h′n,
l′n, k′n. Practical values of the load Love numbers are depicted in Fig. 2.2. Generally, the
variations at large degrees are mostly determined by the shallow properties of the Earth.
What is notable, is that Fig. 2.2 indicates that an incompressible Earth model yields signif-
icantly different Love numbers also at low degrees. The difference can be understood in
that incompressible models are more resistant to a load than compressible Earth models (or
to put differently: more mass needs to be displaced against the force of gravity for a given
deformation). The deformation Love numbers are therefore found closer to zero. Con-
sequently, compressibility of the Earth model should not be ignored on elastic time scales.
Incompressible models are commonly used to model the viscous response to former glacial
loads, for which the effect of compressibility is less important (Tanaka et al., 2011).

As can be seen from Eq. 2.20, all three observables are dependent only on the direct
potential contribution of the load, Φ′n. Green’s functions in terms of deformation and geoid
height change can be constructed by applying a point load to the Earth model, which is
placed at the surface of the Earth. Graphically, the situation is similar to the contribution
of the surface element in Fig. 2.1, except that a point load is now chosen instead and the
Earth is allowed to deform. The direct potential contribution of a point load of 1 kg can be
written as

δφ′p(r− r’) =
G

|r− r’| = G
∞

∑
n=0

|r’|n
|r|n+1 Pn(cos α). (2.21)

Where the term on the right-hand side has been obtained by using Eq. 2.10. When evalu-
ated only on the surface of the Earth, one can set |r| = |r′| = a, and recognize that G = ga2

M

2A general depth dependent formulation is also possible
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Figure 2.2: Elastic load Love numbers for various Earth models: PREM (Dziewonski, 1981),
a modified PREM with crustal properties from CRUST2.0 Wang et al. (2012), AK135 (Ken-
nett et al., 1995), Gutenberg-Bullen (Farrell, 1972), and the elastic limit of a viscous in-
compressible GIA model (Spada, 2008). The Love numbers for PREM, PREM+CRUST2.0
and AK135 are taken from Wang et al. (2012)(suppl. mat.), the G-B Love numbers from
Farrell (1972), and the incompressible Love numbers are computed in-house with the
ALMA software from Spada (2008).
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2 Gravity, Surface Loading and Sea Level

to obtain

δφ′p(a, α) =
∞

∑
n=0

φ
′p
n Pn(cos α),

with φ
′p
n =

ag
M

. (2.22)

The coefficients, φ
′p
n = ag

M , can now be used in Eq. 2.20, which can subsequently be substi-
tuted in Eqs. 2.18, 2.19. This results in the deformation3 and geoid height Green’s functions,
GX, expressed in terms of load Love numbers:

GU(α) =
a
M

∞

∑
n=0

h′nPn(cos α),

GV(α) =
a
M

∞

∑
n=1

l′n
dPn(cos α)

dα
, (2.23)

GN(α) =
a
M

∞

∑
n=0

(
1 + k′n

)
Pn(cos α).

In practice, the Love numbers, l′n, h′n and k′n, are only provided up to a finite degree, so
the sum can not be evaluated exactly. However, observing Fig. 2.2 one sees that the load
Love numbers exhibit an asymptotic behavior for large degrees

lim
n→∞

h′n = h′∞,

lim
n→∞

nl′n = l′∞, (2.24)

lim
n→∞

nk′n = k′∞.

The Green’s functions can be rewritten using a so-called Kummer’s transformation (see
for example Farrell, 1972):

GU(α) =
ah′∞
M

∞

∑
n=0

Pn(cos α) +
a
M

∞

∑
n=0

(
h′n − h′∞

)
Pn(cos α),

GV(α) =
al′∞
M

∞

∑
n=1

1
n

dPn(cos α)

dα
+

a
M

∞

∑
n=1

nl′n − l′∞
n

dPn(cos α)

dα
, (2.25)

GN(α) =
a
M

∞

∑
n=0

Pn(cos α) +
ak′∞
M

∞

∑
n=0

1
n

Pn(cos α) +
a
M

∞

∑
n=0

nk′n − k′∞
n

Pn(cos α).

The summations in the last terms converge quickly enough such that they may be trun-
cated to a maximum degree N. The asymptotic Love numbers may be approximated by
h′∞ = h′N , l′∞ = Nl′N , and k′∞ = Nk′N . The first terms can be written in closed forms using

3The summation for GV starts at n = 1 as dP0(cos α)/dα = 0
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2.2 Surface Loading

the formulas from Singh and Ben-Menahem (1968), such that

GU(α) =
ah′∞

2M sin(α/2)
+

a
M

∞

∑
n=0

(
h′n − h′∞

)
Pn(cos α),

GV(α) = −
al′∞

4M sin(α/2)
+

a
M

∞

∑
n=1

nl′n − l′∞
n

dPn(cos α)

dα
, (2.26)

GN(α) =
a

2M sin(α/2)
− ak′∞

M
ln
(

s(s−
√

2)
)
+

a
M

∞

∑
n=0

nk′n − k′∞
n

Pn(cos α),

where s =
√

cos α.

The isotropic Green’s functions may also be used to compute the deformation and geoid
changes due to a geographically varying surface load. The radial deformation can therefore
be written as a convolution of the surface mass elements with mass σa2dω

U(θ, λ) =
∫

Ω
GU(α− α′)σ(θ′, λ′)a2dω′. (2.27)

The Green’s function from Eq. 2.23 can now be expanded using the addition theorem (Eq.
2.11) and the surface density is expressed in spherical harmonics:

U(θ, λ) =
a4ρw

M

∫
Ω

∞

∑
n,m=0

h′n
2n + 1

Ȳnm(θ, λ)Ȳnm(θ
′, λ′)

∞

∑
n′,m′=0

Tn′m′Ȳn′m′(θ
′, λ′)dω′.

(2.28)

For brevity, the double summation over degree and order is now abbreviated to ∑n,m=0.
Using the orthogonality relation (Eq. 2.6), and substituting M = 4

3 πa3ρe one can write:

U(θ, λ) =
3aρw

ρe

∞

∑
n,m=0

h′n
2n + 1

TnmȲnm(θ, λ). (2.29)

For the horizontal deformation vector field, V, we may use the surface gradient operator
∇Ω = eθ∂/∂θ + eλ∂/ sin θ∂λ to write the convolution as

V(θ, λ) =
a4ρw

M

∫
Ω

∞

∑
n,m=0

l′n
2n + 1

∇ΩȲnm(θ, λ)Ȳnm(θ
′, λ′)

∞

∑
n′,m′=0

Tn′m′Ȳn′m′(θ
′, λ′)dω′.

(2.30)

Which yields two separate surface components:

V(θ, λ) =
3aρw

ρe

∞

∑
n,m=0

l′n
2n + 1

Tnm

[
∂Ȳnm(θ, λ)

∂θ
eθ +

∂Ȳnm(θ, λ)

sin θ∂λ
eλ

]
. (2.31)

In analogy with Eq. 2.18, a spatially-varying surface deformation on a Love-Shida Earth
(relative to a hydrostatically pre-stressed state) can be expressed by a set of degree and
order dependent deformation coefficients Unm and Vnm:

D̂(a, λ, θ) =
∞

∑
n,m=0

[UnmȲnm(λ, θ)er + Vnm∇ΩȲnm(λ, θ)] . (2.32)
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Figure 2.3: Truncated and asymptotic Green’s functions for an unit point load of 1 kg. The
Green’s functions are scaled by sin α/2 to prevent the singularity at α = 0. The difference
between the truncated and asymptotic series is most pronounced in the direct vicinity of
the load, where the asymptotic part dominates, whereas the series agree at the longer
wave lengths. The oscillations are caused due to the Gibbs effect arising from represent-
ing a point load by a truncated series.
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2.3 Reference System Theory

By comparing Eq. 2.32 with Eqs. 2.31 and 2.29 one can readily see that for a surface load

Unm =
3aρw

ρe

h′n
2n + 1

Tnm, (2.33)

Vnm =
3aρw

ρe

l′n
2n + 1

Tnm. (2.34)

The derivation of the potential change due to the surface load is similar to the radial
deformation change,

δφ(θ, λ) =
3agρw

ρe

∞

∑
n,m=0

1 + k′n
2n + 1

TnmȲnm(θ, λ). (2.35)

Just as for a rigid Earth (see Eq. 2.16), the residual Stokes coefficients of the deformed
Earth and its load, are one to one related to the surface loading coefficients

δCnm =
1 + k′n
2n + 1

3ρw

ρe
Tnm. (2.36)

2.3 Reference System Theory

The degree one terms of Eqs. 2.29-2.35 are a special case as they depend on the chosen ref-
erence frame. Blewitt (2003) showed that for a certain family of reference frames, so called
isomorphic frames, the elastic deformation on a SNREI Earth model can be transferred to
a different frame by simply changing the degree 1 Love numbers. Furthermore, for de-
formations arising from glacial isostatic adjustment, Klemann and Martinec (2009) provide
relations to translate the deformations in various reference frames. A necessary condition
is that, in addition to geoid changes, both vertical and horizontal degree 1 deformations
are available from the GIA model in a well defined reference frame. Unfortunately, this is
information is often not available, or it is unclear whether the reference frame is applied
consistently for all observables.

The imbalance of the surface load and the associated deformation of the Earth induces
a shift of the center of figure (CF) of the solid Earth relative to the center of mass of the
Earth system (CM). This movement is commonly referred to as ’geocenter motion’. It is an
important quantity to consider when comparing space based observations with crust-fixed
observations (e.g. tide gauges, bottom pressure recorders, etc.). This section describes the
most important formulas used in this thesis, and provides the physical basis for them.

2.3.1 Center of Surface Figure

The position of the Center of surface Figure (CF) of the Earth in the loaded state can be
computed by integrating the surface deformation over the entire globe (e.g. Blewitt (2003)):

xCF =
1

4π

∫
Ω

D(a, ω′)dω′. (2.37)
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2 Gravity, Surface Loading and Sea Level

For a Love-Shida Earth, the deformation D̂ from Eq. 2.32 can be substituted. Further-
more, upon recognizing that

er =

sin θ cos λ
sin θ sin λ

cos θ

 =
1√
3

 Ȳ11
Ȳ1−1
Ȳ10

 , (2.38)

one may describe, after some manipulation, the integral in terms of Cartesian components:

xCF =
1

4π
√

3

∫
Ω

∞

∑
n,m=0

UnmȲnm

 Ȳ11
Ȳ1−1
Ȳ10

+ Vnm

 ∇ΩȲnm · ∇ΩȲ11
∇ΩȲnm · ∇ΩȲ1−1
∇ΩȲnm · ∇ΩȲ10

 dω′. (2.39)

Most of the terms from the summation will drop out because of the orthogonality rela-
tions from Eq. 2.6 and the identity∮

Ω
∇ΩȲnm(ω) · ∇ΩȲn′m′(ω)dω = 4πn(n + 1)δnn′δmm′ . (2.40)

This implies that the X, Y and Z -component of xCF are directly linked to the coefficients
U/V11, U/V1−1, and U/V10, respectively:

xCF =
1√
3

 U11 + 2V11
U1−1 + 2V1−1

U10 + 2V10

 . (2.41)

In practice, the center of figure is often approximated. A network of GPS stations, at
location ri, may yield a (geometrical) center of network xCN ,

xCN =
1
N

N

∑
i

ri, (2.42)

which differs from xCF as the network covers only part of the Earth surface and errors of
isolated stations and orbit errors (.e.g. from inaccurate solar radiation pressure modelling)
may creep into the estimate (Wu et al., 2002). Reference frames, having this origin are
commonly denoted as center of network frames (CN).

2.3.2 Center of Mass of the Earth System

For satellites orbiting the Earth, a natural choice for their reference system origin is the
’center of mass of the Earth system’ (CM). Satellites sense both the solid Earth and the
surface load and will therefore revolve around this common center of mass. Considering
the combined masses of both the solid Earth and the surface load, this is the point where
a translated potential field would yield zero valued degree 1 coefficients. Its location is
directly related to the degree 1 Stokes coefficients of the gravity field (see App. A.1 for a
proof):

xCM =
√

3a

 C11
C1−1
C10

 . (2.43)
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2.3.3 Center of Earth

For surface loading problems, the center of mass of the Earth system is a weighted sum of
the barycenter of the solid Earth (denoted by CE) and that of the barycenter of the surface
load (denoted by L). Although the center of mass of the Earth system remains stationary,
the CE will alter its position whenever the barycenter of the surface load changes (Trupin
et al., 1992; Dong et al., 1997):

xCM =
1

ML + MS
(MLxL + MSxCE) =

1
M

(mL + mCE). (2.44)

Here, ML and MS are the masses of the surface load and the solid Earth respectively. The
more compact vectors mL and mCE are sometimes called moment vectors4 (e.g. Blewitt,
2003).

The moment vector, mCE, may be computed from integrating the density and deforma-
tion over the entire solid Earth (e.g. Klemann and Martinec (2009)):

mCE =
∫

VS

ρ(θ′, λ′, r′)D(r′, θ′, λ′)dv′. (2.45)

In most Earth deformation (both viscous and elastic) models, the barycenter of the solid
Earth (CE) is often used as the origin of the model reference frame (implying mCE = 0).
This is because, for a given surface load, the position of the CE is invariant w.r.t. the used
Earth parameters and the response of different Earth models may be conveniently com-
pared.

Using Eq. 2.45 to estimate xCE requires the depth dependent density and deformation
from a mechanical Earth model, which is often not available. However, when the surface
load is known Eq. 2.44 may be used to find a simpler expression. This method will be
described below.

The load moment vector, mL, may be computed from integrating the surface load over a
thin shell (Blewitt, 2003):

mL =
∫

Ω
aerσ(ω′)a2dω′. (2.46)

Using Eqs. 2.38, 2.6 and substituting Eq. 2.12, one obtains

mL =
4πa4ρw√

3

 T11
T1−1
T10

 =

√
3aρw M

ρe

 T11
T1−1
T10

 . (2.47)

Since the mass elements, σ(ω′)a2dω′, in Eq. 2.46 are far away from the Earth’s center, mL
will be virtually independent on the used reference frame, as long as it is approximately
geocentric (Blewitt, 2003). Conversely, the degree 1 coefficients of the surface load will be
insensitive to reference system changes.

4after the first mass moment of inertia

25



2 Gravity, Surface Loading and Sea Level

As an alternative to Eq. 2.45, xCE, may be derived from Eq. 2.44

xCE =
1

MS
(MxCM −mL) . (2.48)

Substituting the expression for the center of mass and the load moment vector (Eqs. 2.43
and 2.47) one finds:

xCE =
√

3a
M
MS

 C11
C1−1
C10

− √3aρw

ρe

M
MS

 T11
T1−1
T10


≈
√

3a

 C11
C1−1
C10

− √3aρw

ρe

 T11
T1−1
T10

 ,

(2.49)

where in the approximation it is assumed that M ≈ MS.

2.3.4 Shifting the Reference Frame

The deformation vector field, D̂A, as observed from reference system A, may be observed
from a translated reference frame, B as

D̂B
(λ, θ) = D̂A

(λ, θ)− tA→B. (2.50)

The translation vector from the origin of A to the origin of B is denoted by tA→B (with Carte-
sian components tx,y,z). In the local spherical frame, tA→B, may be written as a spherical
harmonic expansion of degree 1:

tA→B =
1√
3

1

∑
m=−1

t1m [Ȳ1mer +∇ΩȲ1m] (2.51)

with t11 = tx, t1−1 = ty, t10 = tz.

The transformed deformation, D̂B, may therefore be constructed by changing the degree 1
deformation coefficients: U/V11

U/V1−1
U/V10

B

=

 U/V11
U/V1−1
U/V10

A

− 1√
3

tx
ty
tz

A→B

. (2.52)

When changing the reference frame of a potential field, one generally has to replace all
Stokes coefficients. However , for small translations, such as those involved in geocenter
motion, it is safe to modify only the degree one Stokes coefficients (see App. A.2): C11

C1−1
C10

B

=

 C11
C1−1
C10

A

− 1√
3a

tx
ty
tz

A→B

. (2.53)
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2.3.5 Center of Surface Height and Lateral Figure

There are two more frame origins which may be of interest. The first one is the so called
Center of surface Height (CH). A deformation expressed in this frame will yield a zero
valued integral when integrating over the vertical deformation field. Thus by inserting
a deformation field shifted by CH, and projecting it on the radial component, one may
construct the following condition:

0 =
1

4π

∫
Ω

er
[
er ·
(
D(ω′)− xCH

)]
dω′. (2.54)

Only the degree 1 uplift components will yield a non-zero contribution to the integral, due
to the orthogonality properties of the spherical harmonics. Furthermore, for a Love-Shida
Earth, one may use Eq. 2.52 to separate xCH:

xCH =
√

3

 U11
U1−1
U10

 . (2.55)

Similarly, the Center of Lateral surface figure (CL) is the frame origin where the inte-
gral over the horizontal deformation field vanishes. The deformation is now shifted and
projected onto the horizontal components

0 =
1

4π

∫
Ω

{
eθ

[
eθ ·

(
D(ω′)− xCL

)]
+eλ

[
eλ ·

(
D(ω′)− xCL

)]}
dω′.

Again, for a Love-Shida Earth, only the degree 1 components are relevant and one may
then write

xCL =
√

3

 V11
V1−1
V10

 . (2.56)

2.3.6 Degree 1 Considerations for a Radially Symmetric Elastic Earth

In Sec. 2.2.2, the reference frame has not been clearly defined yet. In fact, a whole family
of reference frames exists, in which the degree 1 deformation and potential changes can
be described in the forms of Eqs. 2.29, 2.31, and 2.35 (i.e. they can be described with a
Load Love number formalism). Blewitt (2003) coined these reference systems ’isomorphic
frames’.

To translate one isomorphic frame into another, one requires a translation vector which
is a scaled version of the load moment vector mL (Blewitt, 2003). For surface loading on
a SNREI Earth, any linear combination of the degree 1 components of deformation and
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gravity change, will obey the property

tA→B = β

 C11
C1−1
C10

A

+ η

 U11
U1−1
U10

A

+ ε

 V11
V1−1
V10

A

= αA→B mL

M
= αA→B

√
3aρw

ρe

 T11
T1−1
T10

 .

(2.57)

With the exception of the Center of Network (CN) frame, all frame origins described
so far obey this form (CF, CM, CH, CL, CE). The parameter αA→B is denoted as the “iso-
morphic parameter” (Blewitt, 2003). As will be shown below, the transformation from one
isomorphic frame into another is represented by this single parameter, which implies that
all of these isomorphic frame origins lie on a straight line.

The degree 1 coefficients of the potential and deformation in reference frame A are ex-
pressed as

δCA
1m = (1 + k

′A
1 )

ρw

ρe
T1m,

UA
1m = h

′A
1

aρw

ρe
T1m, (2.58)

VA
1m = l

′A
1

aρw

ρe
T1m.

Using Eqs. 2.52 and 2.53, the reference frame of these observables may be shifted by a
vector of the form of Eq. 2.57, to another (isomorphic) frame B:

δCB
1m = (1 + k

′A
1 − αA→B)

ρw

ρe
T1m = (1 + k

′B
1 )

ρw

ρe
T1m,

UB
1m = (h

′A
1 − αA→B)

aρw

ρe
T1m = h

′B
1

aρw

ρe
, (2.59)

VB
1m = (l

′A
1 − αA→B)

aρw

ρe
T1m = l

′B
1

aρw

ρe
.

The equations above demonstrate that the load Love numbers may be interpreted as
’frame specific’. As shown above, if the Love numbers are provided in one particular frame,
the load Love numbers in another frame may be derived by computing αA→B, and applying
the transformation

1 + k
′B
1 = 1 + k

′A
1 − αA→B,

h
′B
1 = h

′A
1 − αA→B, (2.60)

l
′B
1 = l

′A
1 − αA→B.

Using Eqs. 2.41, 2.55, 2.56, 2.43, 2.49 in combination with Eq. 2.59 the following parame-
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ters are obtained:

αA→CM = 1 + k
′A
1 ,

αA→CF =
(

h
′A
1 + 2l

′A
1

)
/3,

αA→CE = k
′A
1 , (2.61)

αA→CH = h
′A
1 ,

αA→CL = l
′A
1 .

Blewitt (2003) derived these parameters for the example A = CE. However, in the expres-
sions above, one may substitute any of the isomorphic frames for system A.

In the elastic loading case, it is interesting to consider the distance of the CM from the
CE and the CF:

xCM − xCE =
√

3a
(1 + k

′CE
1 )ρw

ρe

 T11
T1−1
T10

 =
√

3a
ρw

ρe

 T11
T1−1
T10

 , (2.62)

xCM − xCF =
√

3a
(1 + k

′CF
1 )ρw

ρe

 T11
T1−1
T10

 . (2.63)

From the above, it is clear that the displacement, xCM − xCE, is independent of the Earth
model used. Although, xCM− xCF, does depend on k

′CF
1 its value is very small (k

′CF
1 = 0.026)

for the preliminary Reference Earth model from Dziewonski (1981)). Consequently, the CE
and the CF coincide to within 3%, for realistic elastic loading problems, whereas the center
of mass of the Earth (CM) is located farther away. This is schematically shown in Fig. 2.4.

2.3.7 Degree 1 Considerations for a Radially Symmetric Visco-elastic Earth

A formulation of deformation and gravity change in terms of time dependent load Love
numbers (see for example Spada (2008)), is possible when certain conditions are satisfied.
This occurs when the variations of the Earth’s density, rigidity and viscosity are radially
symmetric, and when the rheology of the Earth is assumed to be linear. Furthermore, the
time dependency of the load is decoupled from the spatial variation and must follow an
analytical function which is easily expressed in the Laplace domain. This can be for exam-
ple a Dirac delta function, an Heaviside (step) function or a ramp function.

For a Heaviside loading, the time dependent variation of the deformation and gravity
change for a load on a visco-elastic Earth can be described as follows:

∆U∗(θ, λ, t) =
3aρw

ρe

∞

∑
n,m=0

h
′
n(t− tδ)

2n + 1
Htδ

(t)∆TnmȲnm(θ, λ),

∆V∗(θ, λ, t) =
3aρw

ρe

∞

∑
n,m=0

l
′
n(t− tδ)

2n + 1
Htδ

(t)∆Tnm

[
∂Ȳnm(θ, λ)

∂θ
eθ +

∂Ȳnm(θ, λ)

sin θ∂λ
eλ

]
, (2.64)

∆δφ∗(θ, λ, t) =
3agρw

ρe

∞

∑
n,m=0

1 + k
′
n(t− tδ)

2n + 1
Htδ

(t)∆TnmȲnm(θ, λ).
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Figure 2.4: Schematic drawing of the relative locations of various frame origins. For the
elastic loading problem (left), all points lie on the same line (in line with the (load) vector,
xL). The drawing on the right-hand side shows the situation where a visco-elastic Earth
is loaded with an ice-history (after melting). In contrast to the elastic case, the frame
origins generally do not lie on the same line (except CE, CM and xL).

As mentioned before, the surface load increment is factorized in a spatial component
(contained in the coefficients ∆Tnm) and the Heaviside (step) function Htδ

(t). Therefore,
the total surface load will be 0 when t < tδ and will increment discontinuously at time
tδ. The time dependent load Love numbers must be specifically computed for a Heaviside
load.

The formulation is very similar to the elastic case. Therefore, in the same line of rea-
soning, one may introduce a time dependent isomorphic frame parameter, αA→B(t − tδ),
which is coupled to the degree 1 load Love numbers,

1 + k
′B
1 (t− tδ) = 1 + k

′A
1 (t− tδ)− αA→B(t− tδ),

h
′B
1 (t− tδ) = h

′A
1 (t− tδ)− αA→B(t− tδ), (2.65)

l
′B
1 (t− tδ) = l

′A
1 (t− tδ)− αA→B(t− tδ).

In analogy with Eq. 2.61, one can see that the isomorphic frame parameter only depends
on the Love numbers at the same epoch. Shifting the time axis for clarity, it becomes clear
that

αA→CM(t) = 1 + k
′A
1 (t),

αA→CF(t) =
(

h
′A
1 (t) + 2l

′A
1 (t)

)
/3,

αA→CE(t) = k
′A
1 (t), (2.66)

αA→CH(t) = h
′A
1 (t),

αA→CL(t) = l
′A
1 (t).

Consequently, when using a load Love number formalism, a visco-elastic loading problem
can be computed in a reference frame of choice by simply transforming the degree 1 Love
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numbers at every time step.

The spatial distribution of the load increment does not change in time. In order to accom-
modate for loads, varying in space and time such as caused by former ice sheets, one can
discretize a generic loading history, T(θ, λ, t), by summing over various increments ∆Ti:

T(θ, λ, t) ≈
K

∑
i=0

(T(θ, λ, ti)− T(θ, λ, ti−1)) Hti(t) =
K

∑
i=0

∆Ti(θ, λ)Hti(t). (2.67)

The discretized load can now be introduced in Eq. 2.64. Since the relations are linear, the
superposition principle yields the total deformation and gravity change for a given load
history:

U∗(θ, λ, t) =
3aρw

ρe

K

∑
i=0

∞

∑
n,m=0

h
′
n(t− ti)

2n + 1
Hti(t)∆Ti

nmȲnm(θ, λ),

V∗(θ, λ, t) =
3aρw

ρe

K

∑
i=0

∞

∑
n,m=0

l
′
n(t− ti)

2n + 1
Hti(t)∆Ti

nm

[
∂Ȳnm(θ, λ)

∂θ
eθ +

∂Ȳnm(θ, λ)

sin θ∂λ
eλ

]
, (2.68)

δφ∗(θ, λ, t) =
3agρw

ρe

K

∑
i=0

∞

∑
n,m=0

1 + k
′
n(t− ti)

2n + 1
Hti(t)∆Ti

nmȲnm(θ, λ).

Equally valid in this case, the deformation and gravity change can be provided in a refer-
ence frame of choice by modifying the degree 1 Love numbers for all time steps. However
in this case, the time convolution causes that the reference frame origins stray away from a
straight line, as is the case of a purely elastic Earth. This effect is schematically illustrated
in Fig. 2.4).

Often however, GIA models provide only the result of the convolutions. When the 3D
deformation as well as the gravity change are computed in a consistent reference frame,
one can still transform the results from one frame into another. The necessary translations
can be computed from Eqs. 2.41, 2.55, 2.56, 2.43, 2.49. Which can consequently be used in
Eqs. 2.53, 2.52 to compute the degree 1 coefficients in the new frame.

For present day changes of GIA, one finds that CM lies close to the CE. This is because, in
ice history models (e.g. ICE5-G,Peltier, 2004), the present day distribution of the ice/melt-
water is rather smooth (almost all the glacial mass is smoothly distributed as melt water
over the globe). Consequently, the degree 1 components of the present day load are rel-
atively small, and CE is only marginally shifted from the CM. However, during the last
glacial maximum, this offset was considerable (several tens of meters Klemann and Mar-
tinec, 2009).

2.3.8 Geocenter Motion

The term ’geocenter motion’ is used ambiguously in literature (Blewitt, 2003). Loosely
speaking, it refers to the time varying displacement between the different reference frame
origins (CM, CE, CH, CL, CF). For example, some authors define the geocenter as the CF:
(Dong et al., 1997; Blewitt, 2003; Klemann and Martinec, 2009; Wu et al., 2012). Others
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use the CM as the definition of the geocenter (e.g. Heiskanen and Moritz, 1967; Chen
et al., 1999; Crétaux et al., 2002; Bouillé et al., 2000; Rietbroek et al., 2012b). Consequently,
whenever the term ’geocenter motion’ is coined one should invest some time in figuring
out which definition the author uses. To be consistent with the published geocenter motion
time series (Rietbroek et al., 2009, 2012b), the geocenter motion is defined in this thesis as

xGC ≡ xCM − xCF. (2.69)

Most of the time however, the offset is defined explicitly, to avoid confusion.

2.3.9 Helmert Transformation

The procedures described in the previous sections allow a transformation of potential and
deformation between different isomorphic frames. The dynamic theory involved, allows
a deformation of the surface, induced by surface loading or GIA related processes. In ad-
dition to these dynamic transformations, purely rigid transformation techniques are often
used on sets of station coordinates. These implicitly postulate that the relative distance be-
tween stations does not change. On the other hand, the dynamic transformations, implic-
itly assume a non-rotating Earth, and a possible coupling with the Earth’s rotation vector
is therefore neglected (i.e. the orientation of the axes before and after an isomorphic trans-
formation remain parallel).

In order to augment the deformation theory of this work, it is of interest to have available
a tool with which rigid network transformations can be applied. For this means I discuss
the 7-parameter Helmert transform, commonly applied in geodesy, which can be used to
transform a set of coordinates of a rigid network into a different reference system (see for
example Heiskanen and Moritz, 1967)

xB =

tx
ty
tz

+ (1 + s)

 1 −rz ry
rz 1 −rx
−ry rx 1

 xA. (2.70)

The transformation is defined by the 7 Helmert parameters, representing a translation
(tx, ty, tz), a rotation (rx, ry, rz), and a (radial) scaling of the network by (1 + s). Inversely,
when a set of (noisy) station coordinates is known in the frames A and B, the Helmert
transformation may be approximately rewritten as (Heiskanen and Moritz, 1967):

1 0 0 xA 0 zA −yA

0 1 0 yA −zA 0 xA

0 0 1 zA yA −xA 0




tx
ty
tz
s
rx
ry
rz


= HtH = xB − xA + ε. (2.71)

The linearity of Eq. 2.71 above is exploited throughout the thesis. The non-linear terms
which contain multiplications of, sri, may be safely neglected for the small changes con-
sidered. Eq. 2.71 is usually solved in a least squares sense to estimate unknown Helmert
parameters from a set of noisy station coordinate pairs. The Helmert parameters, and the
station residuals, xB − xA, are typically very small such that it suffices to use approximate
station positions in the matrix on the left-hand side.
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2.3.10 Plate Motion

When one considers the tectonic plates to be rigid segments of spherical shells, one may
describe the movement of a station attached to it by means of a so called Euler (plate)
vector, ω̇i. The formulation is very similar to a Helmert transform, except that the relevant
Euler plate vector depends on the station location (see for example Altamimi et al., 2012)

ẋ = ω̇i × x =

 0 z −y
−z 0 x
y −x 0

ω̇i
x

ω̇i
y

ω̇i
z

 . (2.72)

From the cross product it is obvious, that the associated plate motion results in a purely
horizontal motion in the local station frame.

The Euler plate vectors may be given in various reference frames. For global studies they
are commonly provided in a frame which is fixed with a Tisserand or no-net-rotation con-
dition (Argus et al., 2011; Altamimi et al., 2012). This is the frame where the total angular
momentum of the Euler plates is zero:

0 = L =
∫

Ω
x× (ω̇× x)dω =

K

∑
i=1

Qiω̇i. (2.73)

The inertia tensor of each plate, Qi, may be computed when its boundary is available in
digital form. Under the assumption that the lithospheric thickness is constant, the tensor
may be computed by discretizing the following integral (Schettino, 1999; Jin and Zhu, 2004):

Qi =
∫

platei

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 sin θdθdλ. (2.74)

2.4 Self-consistent Sea Level Theory

The distribution of water and ice on land has a heterogeneous spatial nature, since sources
may be localized and constrained by topographic features. In contrast, the ocean generally
adapts itself quickly to an equipotential surface, which results in a much smoother spatial
surface load.

In first approximation, the ocean is at rest and adapts itself to the geoid. This is com-
monly denoted as the passive response of sea level. Whenever the surface load changes,
the geoid will change as a result and the ocean will adapt itself to the new geoid. The ocean
responds quickly to such changes, typically in the order of 4 days (Kuhlmann et al., 2011),
such that the transient behavior can be ignored for this work.

In the following sections, methods are described to compute the passive response of the
ocean while ensuring mass conservation on a global scale. The key to this computation lies
in solving the so-called “sea level equation” (SLE).

The physical principle has been described as early as 1888 (Woodward, 1888). Farrell and
Clark (1976) applied an iterative approach to solve the SLE, in the framework of (visco-)
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elastic loading of the Earth by glacial masses (see also a more recent discussion in Sabadini
and Vermeersen, 2004). A spherical harmonic spectral approach to solve the sea level equa-
tion was proposed by Dahlen (1976) who used the theory to compute the ocean’s response
to the pole tide.

2.4.1 The Sea Level Equation

The “Sea Level Equation” describes the physical relationship between the sought-for pas-
sive sea level, S, and the prescribed (continental) surface load, H. Since mass is conserved
on a global scale, the change in mass of S must be compensated by that of H. The total
surface load, T, expressed in equivalent water height, therefore constitutes of both compo-
nents:

T(λ, θ, t) = S(λ, θ, t) + H(λ, θ, t). (2.75)

Fig. 2.5 schematically depicts the phenomena associated with a self-consistent sea level
response to a continental ice load. Relative sea level change, S, is measured with respect to
the Earth’s crust. This observable may be measured by instruments such as tide gauges and
bottom pressure recorders. Changes in relative sea level are therefore important for coastal
regions. On the other hand, an altimeter would observe geocentric sea level changes, which
essentially follow changes in the geoid height. However, two effects may induce a shift of
the geocentric sea level away from the geoid. Firstly, a mass flux into the ocean will cause
an uniform upward shift, also known as the eustatic sea level rise. Secondly, a change in
the overall ocean basin volume, due to deformations of the ocean floor, will additionally
cause an offset. These shifts are relatively small, such that the sea level surface can still
be considered an equipotential surface. Compared to the geoid, its potential value has
now changed by ∆φ. The above effects can be put together in the form of the “Sea level
equation”:

S(λ, θ, t) = O(λ, θ)
∫

Ω
GN−U(α− α′)

[
S(λ′, θ′, t) + H(λ′, θ′, t)

]
dω′

+
ΛN−U(S, H, λ, θ)

g
+

∆φ

g
.

(2.76)

Here the total surface load is convolved with the Green’s function adapted from Eq. 2.23:

GN−U(α) =
a
M

∞

∑
n=0

(
1 + k′n − h′n

)
Pn(cos α). (2.77)

The reference system associated with the degree 1 load Love numbers can be chosen freely
here, since the combination (1 + k′n − h′n) is frame independent (i.e. the isomorphic frame
parameter from Sec. 2.3.6 cancels out).

The ocean function,

O(θ, λ) =

{
1, ocean
0, elsewhere , (2.78)

projects a function onto the ocean region.
The final term ∆φ/g, has already been explained above, and ensures mass conservation

globally. The second term, containing ΛN−U , represents the effect of the rotational feed-
back (see Sec. 2.4.3 for the computation of this term).
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Principle of self consistent sea level
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Figure 2.5: Schematic representation of the self consistent sea level. After the disappearance
of a continental surface load, several effects can be seen. (1) The changed surface load
changes the deformation of the solid Earth. (2) The mean sea surface adapts to a new
equipotential surface. (3) The potential value of this surface differs from that of the geoid
by ∆φ, since melt water changes the overall ocean mass. (4) The volumetric change of the
ocean basin Ūoce corresponds to the offset between the geocentric (relative to an ellipsoid)
global mean sea level, and the relative (to the crust) global mean sea level.
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Figure 2.6: The present day ocean function is determined by the coastline and the ground-
ing line of marine terminating glaciers. In particular in Antarctica there is an appreciable
difference between the grounding line and the sea shelf extent (black line). Furthermore,
during the last glacial maximum (LGM), significant differences can be noted in the for-
mer glaciated regions. (Ocean functions courtesy of Wouter vd. Wal.)
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As can be noted, S, occurs at both sides of the equality sign. In practice, this implies that
one either solves the equation for S, or one uses an iterative procedure to converge to the
correct S. In the next section, the sea level is solved explicitly.

2.4.2 Spectral Solution of the SLE without Rotational Feedback

The variables of the SLE can be approximated by a (truncated) spherical harmonic expan-
sion:

S(θ, λ) =
Nmax

∑
n=0

n

∑
m=−n

SnmȲnm(θ, λ),

H(θ, λ) =
Nmax

∑
n=0

n

∑
m=−n

HnmȲnm(θ, λ),

aTnm = Hnm + Snm. (2.79)

Hnm, Snm are given in meter of equivalent water height, whereas the Tnm is dimensionless
and multiplied by the Earth’s radius, a, in order to be consistent with the previous sections.

To simplify the formulation of the SLE, the so-called quasi-spectral Sea level, S̃, is intro-
duced (Blewitt and Clarke, 2003). The quasi-spectral sea level is a band-limited quantity
which is related to S according to

S(θ, λ) = O(θ, λ)S̃(θ, λ), (2.80)

S̃(θ, λ) =
Nmax

∑
n=0

n

∑
m=−n

S̃nmȲnm(θ, λ).

When expressed as a truncated spherical harmonic series, S̃ is significantly smoother
than S, which suffers from truncation effects at the discontinuous change at the coastline.
S̃ is therefore much more suitable to represent an equipotential surface. However, since its
value over land is far from zero, S̃, cannot be used to represent the actual surface load, for
which S should be used. Only in the limit, Nmax → ∞, the two will coincide with each
other over the ocean.

In appendix B, it is shown that Eq. 2.80 can be written as a matrix-vector multiplication
in the spectral domain, when S̃ is truncated at Nmax. The spherical harmonic coefficients
of the ocean function, Onm, will be used as input for the ’product to sum’ matrix O (see
App. B for the computation of this matrix). This allows the following matrix notation for
the relation of the Quasi-spectral sea level:

s = Os̃. (2.81)

Above and in the following discussion, the spherical harmonic coefficients are stacked
in vectors of the form,

sT =
[
S00 · · · Snm

]
,

s̃T =
[
S̃00 · · · S̃nm

]
,

oT =
[
O00 · · · Onm

]
.

(2.82)
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The sea level equation can now be written in matrix form

Ps̃ = GN−U(s + h) = GN−U(Os̃ + h), n > 0. (2.83)

Where the projection matrix P sets the degree 0 coefficients to zero,

P =


0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 . (2.84)

Furthermore, the diagonal matrix GN−U contains the entries from the Green’s functions
in the spectral domain:

GN−U =


1 0 · · · 0
0 ρw

ρe
(1 + k′1 − h′1) · · · 0

...
...

. . .
...

0 0 · · · 3ρw
ρe

1+k′N−h′N
2N+1

 . (2.85)

The entry for degree 0, initially undefined, has been set to 1 here, which will turn out to
be convenient for enforcing mass conservation.

The conservation of mass of the system namely requires that

0 = S00 + H00 =
∫

Ω
O(θ, λ)S̃(θ, λ)dω + H00. (2.86)

In the spectral domain, the integral may be solved using the orthogonality property from
Eq. 2.6, resulting in the inner product of the coefficient vector s̃ and the equivalent vector
o ∫

Ω
O(θ, λ)S̃(θ, λ)dω = oT s̃. (2.87)

The quasi-spectral sea level in Eq. 2.83 is now taken to the left hand side of the equation

[P−GN−UO] s̃ = GN−Uh. (2.88)

It can be seen that the mass conservation requirement is fulfilled, by writing the first row
of the equation explicitly as:

− [O]1strow s̃ = H00

−oT s̃ = −S00 = H00. (2.89)

The conservation of mass is now automatically fulfilled since the first row of the matrix O
is nothing more than the transposed vector of the ocean basin coefficients, oT.

The quasi-spectral sea level may now be obtained by inversion:

s̃ = GS̃GN−Uh, (2.90)

where,
GS̃ = [P−GN−UO]−1 . (2.91)
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The inversion to obtain matrix GS̃ is very stable, associated with typical condition num-
bers of around 4 (for inversions up to degree and order 180). Alternatively, as is commonly
found in literature (see Spada and Stocchi, 2007 for a detailed review), the sea level equa-
tion is solved iteratively within just a few iterations in a pseudo-spectral sense, which also
hints at the stability of the SLE . The term pseudo-spectral means that the product to sum
operation of matrix O is replaced by a spherical harmonic synthesis on a suitable grid 5, fol-
lowed by a projection on the ocean nodes, which is then followed by a spherical harmonic
analysis to obtain the coefficients of the relative sea level s.

2.4.3 Solution of the SLE with Rotational Feedback

Eq. 2.76 also contains a term representing the rotational feedback mechanism. A chang-
ing surface load will generally induce a change in the Earth’s moment of inertia tensor.
Consequently, the rotational axis of the Earth will move away from its initial position. The
rotational axis of the Earth is now misaligned with the z-axis of the reference system, which
will induce a small anomalous rotational potential. This potential can be considered as a
tidal load acting on the Earth, deforming it and inducing a change in the geoid. The mecha-
nism above may be linearized w.r.t. the surface load for small changes, such as considered
in this work. The linearization allows a spectral inversion which is very similar to that
found in the previous section.

The Euler-Liouville equations may be linearized by assuming that the Earth’s rotational
axis, ω, is perturbed by a small disturbance m1, m2, m3 and that the Earth’s inertial tensor,
J, deviates only slightly from a perfectly aligned ellipsoid (Munk and MacDonald, 1960)

ω = ΩE

 m1
m2

1 + m3

 , (2.92)

J =

A 0 0
0 A 0
0 0 C

+

δJ11 δJ12 δJ13
δJ12 δJ22 δJ23
δJ13 δJ23 δJ33

 . (2.93)

Here, Ω is the mean rotational speed of the Earth, and A and C are the Earth’s principal
moments of inertia.

In fact, only the components δJ13, δJ23 and δJ33, will occur in the first order terms of the
linearized Euler-Liouville equations. These changes in moment of inertia may be induced
by a change in surface density. For a spherical layer with density σ(θ, λ) one can write for
δJi3:

δJ13 =
∫

Ω
−xzσ(θ, λ)a2dω,

δJ23 =
∫

Ω
−yzσ(θ, λ)a2dω, (2.94)

δJ33 =
∫

Ω

(
x2 + y2) σ(θ, λ)a2dω.

5A certain arbitrariness remains in the choice of a suitable grid. There is no unique choice of resolution and
geometry of the grid, such that the procedure might result in slightly different results.
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Substituting Eq. 2.12 and observing that:

xz = a2 cos λ sin θ cos θ = a2 Ȳ21(θ, λ)√
15

,

yz = a2 sin λ sin θ cos θ = a2 Ȳ2−1(θ, λ)√
15

, (2.95)

x2 + y2 = a2 sin2 θ = a2 2
3

(
Ȳ00(θ, λ)− Ȳ20(θ, λ)√

5

)
.

One can use the orthogonality relation 2.6 together with Eq. 2.79 to write the relevant
terms as a matrix vector multiplication:

δJ13
δJ23
δJ33

 =πa4ρw

0 0 − 4√
15

0
0 0 0 − 4√

15
8
3 − 8

3
√

5
0 0




aT00
aT20
aT21

aT2−1



=ΨJ←T


H00 + S00
H20 + S20
H21 + S21

H2−1 + S2−1

 .

(2.96)

Considering the normalizations used, this is consistent with the results obtained in Wu and
Peltier (1984) and Milne and Mitrovica (1998), except that the latter would require the ap-
plication of the Condon-Shortley phase, (−1)m, to fix the signs for the order 1 coefficients.

For an elastic Earth, the linearized Euler-Liouville equations relate the changes in polar
motion to the changed inertial tensor (Peltier and Luthcke, 2009; Nakada and Okuno, 2003;
Mitrovica et al., 2005):

m1
m2
m3

 =

ΩE
1+k′2
Aσ0

0 0

0 ΩE
1+k′2
Aσ0

0

0 0 − 1+k′2
C


δJ13

δJ23
δJ33

 = Γm←J

δJ13
δJ23
δJ33

 . (2.97)

Where, σ0 is the Chandler frequency. It must be noted however, that the expression holds
only for slowly varying phenomena (e.g. secular changes and phenomena which have pe-
riods longer than the Chandler wobble). To account for quicker phenomena, one would
need to either apply the non-linear theory, or to correct the results using observed Earth
orientation parameters.

As mentioned before, the motion of the pole will induce a change in the centrifugal po-
tential. In the initial state, the rotation axis is perfectly aligned with the z axis such that one
may use Eq. 2.7 and write it as:

Λ(θ) =
Ω2

Ea2

2
sin2 θ =

Ω2
Ea2

3
(1− P2(cos θ)) . (2.98)
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In the new situation, this potential, Λ′(θ, λ), has now a new rotation axis, ω, while the
reference system remains fixed. Substituting Eq. 2.92 and applying the addition theorem
we may write for the potential difference:

δΛ(θ, λ) = Λ(θ)−Λ′(θ, λ)

=
Ω2

Ea2

3
(1− P2(cos θ))− |ω

2|a2

3

(
1− 1

5

2

∑
m=−2

Ȳ2m(θ, λ)Ȳ2m(θ
′, λ′)

)
.

(2.99)

Where,

λ′ = arctan
(

m2

m1

)
, θ′ = arctan


√

m2
1 + m2

2

m3

 , (2.100)

indicate the position of the new rotation axis. For small perturbations of mi only the first
order terms need to be accounted for, such that:

δΛ00
δΛ20
δΛ21

δΛ2−1

 ≈ (aΩE)
2


0 0 2

3
0 0 − 2

3
√

5
− 1√

15
0 0

0 − 1√
15

0


m1

m2
m3

 = ΦΛ←m

m1
m2
m3

 . (2.101)

The change in potential acts on the Earth as a tidal load, which will deform the Earth and
induces geoid changes. The associated geoid height changes minus the vertical deforma-
tion can also be computed using a Love number formalism. So the contribution of the
rotational feedback to the Quasi-spectral sea level is limited to a subset of coefficients and
may be written as: S̃20

S̃21
S̃2−1


rot

=
1 + k2 − h2

g

0 1 0 0
0 0 1 0
0 0 0 1




δΛ00
δΛ20
δΛ21

δΛ2−1

 = TS̃←Λ


δΛ00
δΛ20
δΛ21

δΛ2−1

 . (2.102)

In contrast to the load Love numbers, k2 and h2 are denoted as ’body Love numbers’ and
are computed by applying a unit load on an Earth model, which does not exert surface
pressure on the Earth. The degree 0 component is small and has been removed in order to
ensure mass conservation in the system. From the three coefficients affected, S̃21 and S̃2−1
are the most dominant, as variations in m1 and m2 are relatively large.

The extra term may now be added to the Sea Level Equation (Eq. 2.90):

Ps̃ = (GN−U + ΞN−U) (Os̃ + h). (2.103)

Where the (3 x 4) matrix ΞN−U contains the rotational feedback mechanism as described
above:

ΞN−U =
[
TS←ΛΦΛ←mΓm←JΨJ←T

]
. (2.104)

The quasi-spectral sea level can be solved similarly as in the previous section:

s̃ = G†
S̃ (GN−U + ΞN−U)h, (2.105)

where one can explicitly solve the matrix

G†
S̃ = [P− (GN−U + ΞN−U)O]−1 . (2.106)
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2.4.4 Sea Level Equation on a Visco-elastic Earth

The theory of the sea level equation has a long history in the study of Glacial Isostatic Ad-
justment (GIA) problems where a visco-elastic Earth model is subjected to a loading history
of glacial ice masses. At each time step, the ocean response to the present and past ice load-
ing is computed using the sea level equation. In this section I show that the solution of the
SLE for visco-elastic problems is very similar to the elastic case, except that an additional
forcing vector, depending on the variations in the past, is added. The theory on post-glacial
sea level with moving shorelines has been extensively described in for example Mitrovica
and Milne (2003); Kendall et al. (2005). Here, the aim is to provide a description in the
spectral domain following matrix notation, for the case of a Heaviside loading history, us-
ing time dependent Love numbers.

As introduced in Sec. 2.3.7, the time history of the load and the sea level may be dis-
cretized with Heaviside increments. In matrix notation this can be written as:

I∗(tj) = I∗j =
j

∑
i=0

I∗i − I∗i−1 =
j

∑
i=0

∆I∗i , (2.107)

h∗(tj) = h∗j =
j

∑
i=0

h∗i − h∗i−1 =
j

∑
i=0

∆h∗i =
ρice

ρw
I∗j , (2.108)

s∗(tj) = s∗j =
j

∑
i=0

s∗i − s∗i−1 =
j

∑
i=0

∆s∗i , (2.109)

s̃∗(tj) = s̃∗j =
j

∑
i=0

s̃∗i − s̃∗i−1 =
j

∑
i=0

∆s̃∗i . (2.110)

Similar to the previous section, the vectors contain the stacked spherical harmonic coef-
ficients of sea level(s∗,s̃∗), uplift(h∗) and additionally the metric ice thickness of the glacial
ice sheet, I∗.

To convolve a load in the time domain, the time offset between the loading epoch,t′, and
the present time, t is now introduced into the loading Green’s functions:

G∗N−U(t− t′) =


1 0 · · · 0
0 ρw

ρe
(1 + k′1(t− t′)− h′1(t− t′)) · · · 0

...
...

. . .
...

0 0 · · · 3ρw
ρe

1+k′N(t−t′)−h′N(t−t′)
2N+1

 .

(2.111)
In the elastic limit, when t→ t′, the matrix converges to GN−U .

Using the time dependent Green’s functions, the sea level equation can be written as:

Ps̃j =
j

∑
i=0

G∗N−U(tj − ti)

(
ρice

ρw
∆Ii + ∆si

)
. (2.112)

Where the Heaviside loading history is accounted for by the cumulative sum up to index
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j. The increment ∆s̃j = s̃j − s̃j−1 can now be written as:

P∆s̃j =G∗N−U(0)
(

ρice

ρw
∆Ij + ∆sj

)
+

j−1

∑
i=0

(
G∗N−U(tj − ti)−G∗N−U(tj−1 − ti)

) (ρice

ρw
∆Ii + ∆si

)
.

(2.113)

Furthermore, when considering that

sj = Ojs̃j, (2.114)

the increment of the relative sea level can be written as:

∆sj =Oj

j

∑
i=0

∆s̃i −Oj−1

j−1

∑
i=0

∆s̃i

Oj∆s̃j +
(
Oj −Oj−1

)
s̃j−1.

(2.115)

The last term represents the phenomena that a moving shoreline alone will also induce a
sea level change by displacing the ocean mass (see Mitrovica and Milne (2003); Kendall
et al. (2005)). Substituting the ∆sj in the first term of the sea level equation yields:

P∆s̃j = GN−U

(
ρice

ρw
∆Ij + Oj∆s̃j

)
+F . (2.116)

Where the vector F is dependent on the load from the previous steps only:

F =
(
Oj −Oj−1

)
s̃j−1 +

j−1

∑
i=0

(
G∗N−U(tj − ti)−G∗N−U(tj−1 − ti)

) (ρice

ρw
∆Ii + ∆si

)
. (2.117)

Separating the quasi spectral sea level yields

∆s̃j = GS̃j

(
GN−U

ρice

ρw
∆Ij +F

)
, (2.118)

with the matrix
GS̃j =

[
P−GN−UOj

]−1 . (2.119)

The ocean function above, has actually varied significantly over the time from the last
glacial maximum until now (see Fig. 2.6). More specifically, the shorelines migrate due to
changes in the relative sea level themselves. This issue manifests itself as a feedback in Eq.
2.118, prohibiting a direct solution. A way out of this caveat is to use an iterative approach,
where an initial ocean function is updated after each loading cycle, until the negated total
present day sea level agrees with a given present day topography: −s̃(tp) = T(tp) (see
Kendall et al., 2005 for an elaborate discussion).

The effect of rotational feedback has been left out of the discussion. In the time domain, a
linear relation between the inertia perturbations and the polar motion exist when the Love
numbers are described by a finite set of normal modes, and the linearized Euler-Liouville
equations are applied (see for example Wu and Peltier (1984)). However, for continuous
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viscosity/rigidity profiles and/or a compressible Earth one generally needs to convolve
the loading history with the Love numbers in the Laplace domain, and consequently apply
an inverse Laplace transform (see Cambiotti et al., 2010 for a thorough discussion on this
topic). Although this is an interesting and ongoing topic in science, a proper treatment
with the time dependent Love number formalism would be laborious and out of the cur-
rent scope as it would introduce non-linearities in the sea level equation.

2.4.5 Sea Level Equation with other Forcings

For completeness it is mentioned here that the elastic solutions for the sea level equation
may be slightly adapted to incorporate other forcings. For example, the computation of the
equilibrium ocean pole tide (Desai, 2002) may be constructed by fixing the polar motion,
mi to prescribed (i.e. measured Earth Orientation Parameters) values, while fixing h = 0.
Resulting in

s̃ = [GS̃] TS̃←ΛΦΛ←m

m1
m2
m3

 (2.120)

In a different problem, the self consistent sea level response may be computed when
geoid and uplift changes induced by Earthquakes are used as a forcing (Melini et al., 2010).

2.5 Steric Sea Level

Apart from the mass related sea level, changes in temperature and salinity do also effect
the change the column height without changing the net mass. These so-called steric effects
have the same order of magnitude as the mass induced changes and play a vital role in
understanding ocean circulation and global changes. In particular, steric sea level change
is related to changes in the ocean heat content, linking the Earth’s radiation imbalance di-
rectly to sea level change. It is therefore not surprising that the separation of the steric part
from the mass induced part is an important goal of this thesis. In a nutshell, separation
of those components may be achieved when gravity (mass) related measurements, such as
those from GRACE, are combined with geometrical measurements of the sea level, such as
those from altimetry and tide gauges.

Consider a column of sea water. Measured from the ocean floor, its height depends on
the net mass flux into the column. Additionally, the warming of the water column, will
cause an expansion or equivalently a density decrease. Another effect is caused by changes
in salinity. The removal of salt from the column will cause a density decrease and is there-
fore associated with a volumetric expansion.

The steric height change, hsteric, relative to a reference sea water column, can be obtained
from integrating the density anomalies, ρ, from the bottom, H up to the sea surface:

hsteric(t) =
∫ 0

−H

ρ0(T0, S0, p(z))− ρ(T, S, p(z), t)
ρ0(T0, S0, p(z))

dz. (2.121)

43



2 Gravity, Surface Loading and Sea Level

The nonlinear relation between the density, ρ, temperature, T , salinity, S, and pressure,
p(z), is called the equation of state for sea water (Gill, 1982), and is determined empiri-
cally. The subscript ’0’, denotes the reference density for ’standard sea water’. Under good
approximation, one may separate the steric sea level in a thermo-steric and a halo-steric
component (Landerer et al., 2007):

hsteric(t) ≈
∫ 0

−H

ρ0(T0, S0, p(z))− ρ(T, S0, p(z), t)
ρ0(T0, S0, p(z))

dz+∫ 0

−H

ρ0(T0, S0, p(z))− ρ(T0, S, p(z), t)
ρ0(T0, S0, p(z))

dz.
(2.122)
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Within this work, observations from several geodetic measurement techniques are used.
This chapter describes the relevant observations and its characteristics. In combination
with chapter 2, the following sections provide the implementation basis of the thesis work.

3.1 GRACE Gravimetry

With the launch of the satellite twin mission GRACE in March 2002, unprecedented global
gravity field solutions became available every month. Several processing centers, GFZ,
CSR, JPL, and GRGS publish new Stokes coefficients on a regular basis. Furthermore, al-
ternative GRACE solutions have been published based on different processing techniques,
e.g. using shorter processing arcs (Mayer-Gürr et al., 2006) and Kalman filtering techniques
to obtain daily solutions (Kurtenbach et al., 2009).

GRACE measurement principle

surface
load

Phase obs.
(GPS & K-Band)CM

Figure 3.1: GRACE measure-
ment principle. Changes
in the gravity field induce
minute orbit perturbations
of the GRACE twin satel-
lites. The inter-satellite
distance is accurately mea-
sured with the K-band in-
strument. At the same
time the orbit is tracked
using GPS observations.

The primary observation of GRACE is a highly accurate measurement of the inter-satellite
range (rate). This is obtained from the K-band ranging instrument, with an accuracy in the
order of 1 µm/s. Furthermore, the GRACE satellites are positioned using GPS measurements
from the on-board receivers. (see Fig. 3.1). On a regular basis, direct laser tracking obser-
vations to the satellites retro-reflector are obtained, although these are mainly used as a
validation dataset (Schmidt et al., 2008).

Since the earliest solutions, many improvements have been made to the processing stan-
dards, which are reflected in the consequent releases. As of 2013, the fifth release is the
most up to date. The largest reduction in errors over the previous release is achieved by
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the use of better background models (see Tab. 3.1).

Background model Release 04 Release 05

Ocean OMCT (Dobslaw and
Thomas, 2007a)

OMCT2011 (Dobslaw et al., 2013)

Atmosphere ECMWF ECMWF
Static gravity field EIGEN-GL04C EIGEN-6C
Time variable gravity - EIGEN-6C (trend, seas. harm.)
solid Earth Tides IERS2003 IERS2010
Pole tide IERS2003 IERS2010
Ocean pole tide Desai (2002) Desai (2002)

Ocean tides FES2004(Lyard et al., 2006)
EOT11a (Savcenko and
Bosch, 2012)

Atmospheric tides Biancale and Bode (2006) Biancale and Bode (2006)

Table 3.1: Background models used in the GRACE processing of the GFZ release 4 and 5.

The use of the atmospheric and ocean background models, remove a significant amount
of high-frequency signal from the measurements. Nevertheless, the models are not perfect,
and the discrepancies induce still spurious errors in the solutions, known as temporal alias-
ing. These effects can be mitigated by applying a filtering step to the solutions (e.g. Kusche
et al. (2009)). An unavoidable side-effect is that the filters also reduce the signal contents.
For studies of ocean mass variations and atmospheric effects, one needs to restore the mod-
eled signal content which has been removed during the processing. For this means, GFZ
also provides monthly (and weekly) averages of the (de-aliasing) models, which may be
added back by the user.

In this thesis, weekly and monthly GRACE-derived Stokes coefficients and their full
error-covariance are used from the GFZ release 04 and 05. To be more specific, GFZ has
made these data available in binary form as (unsolved/unfiltered) normal equation sys-
tems, which are then further processed in the framework of this thesis. GRACE specific
nuisance parameters (e.g. accelerometer biases), are implicitly solved for using the method
from App. C.2.

The GFZ processing center also provides a calibrated diagonal error-covariance matrix
computed according to Schmidt et al. (2007b). It is derived from applying degree-wise
rescaling factors to the formal GRACE errors. This procedure allows a correction of the
formal errors which are likely too optimistic at low degrees. In an earlier stage of the
thesis work, I used calibrated normal equation systems in the joint inversions computed
according to Rietbroek et al. (2009):

Ncal = D−1ND−1,

bcal = D−1ND−1x̂, (3.1)

[lT
0 Pl0]cal = x̂TD−1ND−1x̂,

x̂ = N−1b.
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Where the calibrated normal matrix and right hand side vector is denoted by Ncal and
bcal . The diagonal matrix, D, contains the calibration scales. Furthermore, the new a priori
cost functional is denoted by [lT

0 Pl0]cal (see also App. C). A disadvantage of the above cali-
bration procedure is that it requires an intermediate solving step to obtain x̂. Consequently,
this calibration procedure cannot be applied when the uncalibrated system has (near) rank
defects.

Unfortunately, the GRACE measurement system is insensitive to degree 1 variations.
A common application of the GRACE Stokes coefficients is to compute surface loading
variations using the inverse of Eq. 2.36. The degree 1 surface loading coefficients are thus
described by:

T1m =
1

1 + k′CM
1

ρe

ρw
δC1m =

1
0

ρe

ρw
δC1m. (3.2)

In the CM reference frame, the degree 1 load Love number k
′CM
1 = −1, making the

equation singular, and the value of T1m can obtain any value. The degree 1 surface loading
must therefore be constrained by the addition of external data, such as is performed in this
thesis.

3.2 Sea Surface Height and Ocean Bottom Pressure

3.2.1 Radar Altimetry

A radar altimeter essentially measures the round trip time of a radar pulse emitted from the
satellite which is then reflected by the sea surface. Additionally, tracking techniques such
as DORIS and GPS , are used in determining a precise orbit of the satellite. The principle
product are sea surface heights (hssh), which represent the height of the sea surface relative
to a chosen ellipsoid. hssh is derived from the measured range, the orbit and from a suite of
instrumental and geophysical corrections (See Fig 3.2 and Table 3.2)

hssh = horbit − hrange + ∑
i

hcorr,i. (3.3)

In this work, along track Jason-1 and Jason-2 data from the Open Altimeter Database
are used (Schwatke et al., 2010). The along track data have been gathered in mean along-
track bins, with a length of about 5.8 km. Since the locations of these bins do not change
over time, an advantage exists when setting up normal equations. The data have been
corrected with the usual instrument errors and the EOT11a tidal model (Savcenko and
Bosch, 2012). Furthermore, radial orbit errors have been estimated and corrected for by
applying a multi-mission crossover analysis (Bosch and Savcenko, 2007). The dynamic
atmosphere correction comes from the MOG2D model (Carrère and Lyard, 2003). A mean
sea surface height model (Rio and Hernandez, 2004) is also subtracted and provided at the
locations of the bins.

In this thesis, the time variable effects of sea level and gravity are jointly investigated.
Therefore, the sea level anomalies (sea surface height relative to the mean sea surface, hmssh)
are decomposed as follows:

hssh − hmssh = hIB + hsteric + [S̃ + U]elas + [S̃ + U]GIA + hdyn. (3.4)
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Figure 3.2: Radar altimetry measure-
ment principle. The return trip
of the radar pulse from the mi-
crowave altimeter, is a measure of
the difference between the satellite
and the sea surface. Additionally,
to aid in the precise orbit determi-
nation, the satellites measures the
signal emitted from the crust-fixed
DORIS beacons (Doppler Orbitog-
raphy and Radio-positioning Inte-
grated by Satellite).

Radar altimetry measurement principle

Radar,
DORIS.

It should be stressed that the sea level anomaly, instead of the commonly used dynamic
topography (sea surface height relative to a mean geoid) is decomposed here. The terms
above will be elaborated upon in the following paragraphs.

Table 3.2: Altimetry corrections and as-
sociated order of magnitude. Values
taken from (Rosmorduc et al., 2009;
Fu and Cazenave, 2001)

Name Magnitude
Instrument corrections

Ultra-stable oscillator drift 1cm
Satellite center of gravity sat. dep.
(Radial) orbit correction few cm

Geophysical corrections
Ocean tides 1-20 m
Solid Earth tides 50 cm
Ocean Pole tide 2 cm
Tidal loading 30 cm
Ionosphere 50 cm
Wet troposphere 50 cm
Dry troposphere 2.3 m

Surface corrections
Dynamic Atmosphere correction 15 cm
Sea state bias 50 cm

Sea level response to atmospheric pressure
In Eq. 3.3, a high frequency dynamic atmosphere correction is included, to account for
the quick ocean response to atmospheric forcing. On the time scales longer then 10 days,
which are the representative scales of this work, the correction can be assumed to be a
steady-state response which is commonly denoted as the Inverted Barometer (IB) response
to atmospheric pressure, hIB. Correcting the sea level anomalies with the IB response es-
sentially adds the local atmospheric surface pressure as a column of sea water to the ocean
surface:

hIB =
Patm − Pre f

gρw
. (3.5)
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In the modified IB response, the reference pressure, Pre f , is taken to be the oceanic mean of
the atmospheric pressure

Pre f =
1

Aoce

∫
Oce

Patmdω. (3.6)

The integral arises from the assumption that the ocean can be treated as incompressible
w.r.t. atmospheric pressure variations, implying that only variations relative to the oceanic
mean of the pressure field are relevant. The corrected sea level anomalies are less noisy,
but now contain an atmospheric component. In contrast, GRACE data generally has its
atmospheric component removed, such that care must be taken when combining altimetry
with GRACE. This will be further discussed below.

Mass versus Steric Induced Variations
The volumetric sea level variations, hster, are induced by changes in temperature and salin-
ity (see Sec. 2.5). These volume changes are visible in the sea level anomalies, but are not
(directly) related to the mass changes. Since these changes do not induce ocean bottom
pressure variations, they cannot be detected by GRACE. As such, the altimetric sea level
anomalies are highly complementary to GRACE data.

Besides these volumetric effects, there are mass related changes in sea level (see Sec. 2.4),
which originate from a changing continental surface load. Both the change in the loading
distribution as well as the addition or removal of water from the ocean play a significant
role here.

The orbit of a satellite altimeter is provided relative to a time-fixed reference frame (for
example the TOPEX ellipsoid), such that deformations of the ocean floor will also be sensed
by the altimeter. The observed sea surface change is commonly denoted as geocentric sea
level change. This is essentially the variation of the geoid, with additional uniform layer
changes in order to impose the conservation of mass. The term [S̃ + U]elas, thus represents
the geocentric sea surface change due to elastic surface loading effects. In this thesis, these
geocentric sea level variations are computed using the sea level equation as described in
Sec. 2.4.1 to ensure a gravitationally consistent sea level response, conversing mass on a
global scale.

A similar term, [S̃ + U]GIA, corresponds to the GIA induced geocentric sea level change.
On the timescales considered, this will be treated as a secular variation. Two effects play
a role here. Firstly, the slow adjustment of the solid Earth, induce a non-uniform trend in
the geoid. Secondly, as the mantle material is flowing back to the former glaciation areas
(Laurentide and Fennoscandia), the ocean floor is sinking on average. The latter effect
accounts for the slight offset between the GIA induced geoid surface and the geocentric sea
level (i.e. the two equipotential surfaces do not share the same potential value).

Dynamic Sea Level Variations
Finally, there are dynamic variations of the sea level, hdyn, which do not cancel out on the
time scales considered. This term contains the (net) effects of the wind and pressure driven
sea level variations and its associated (time-varying) currents. The dynamic sea surface
height as stated here can therefore not be simply thought of as the dynamic topography,
since the steric height, which is not included in hdyn, would also contribute to the dynamic
topography. In fact, the sum of hIB + hdyn introduce variations in ocean bottom pressure.
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In this thesis, hIB + hdyn is not the signal of interest, but it is reduced by subtracting the
(monthly) ocean bottom pressure variations from the GRACE de-aliasing model (GAC).
However, before correcting, the GAC product is modified by subtracting the oceanic mean
of the GAC product itself. This step prevents the introduction of artificial mean sea level
changes in the altimeter residuals. After correcting, the remainder of hdyn + hIB is simply
treated as measurement residual. After the correction, the altimetry data still contain the
signal of interest, namely the steric variations and the time-varying passive sea level re-
sponse to terrestrial surface loading.

In summary, the along-track corrected altimeter measurements, flow as observations in
the fingerprint inversion as

∆h(θ, λ) = hssh(θ, λ)− hmssh(θ, λ)−
(

TGAC(θ, λ)− 1
Aoce

∫
Oce

TGAC(θ
′, λ′)dω′

)
. (3.7)

3.2.2 Ocean Models

In this thesis, simulated ocean bottom pressure from FESOM (Finite Element Sea Ice Model,
Brunnabend (2011); Timmermann et al. (2009)) are used as pseudo-observations. Strictly
speaking, the output from an ocean model is not a measurement, since it is also based on
physical relationships. However, to some extent, the propagated observational noise from
the forcing fields and the model errors itself, can be considered as (Gaussian) measurement
noise. In that line of reasoning, it is justifiable to consider the model output as a set of
pseudo-observations. The information contained in the model serves as a useful constraint
keeping the oceanic variations within reasonable limits.

The model is forced by both wind stress and pressure from ECMWF data, which ensures
that the derived ocean bottom pressure plus the ECMWF atmospheric surface pressure
adds up to the total bottom pressure.

The model applies a Greatbatch correction (Greatbatch, 1994), which essentially makes
the model mass consistent with the river flux from the hydrological model LSDM (Dill,
2008). Nevertheless, the river fluxes are to a large extent unknown such that the mass con-
tent of the entire ocean is associated with a large error as well. In the joint inversion, this
problem will be mitigated by co-estimating a mass-correction term for the ocean model,
which is constrained by the other data (GPS and GRACE).

Due to the complexity and non-linearity of an ocean model, its errors are difficult to
quantify. In order to estimate an error, FESOM has been forced by two atmospheric mod-
els, ECMWF and NCEP, separately (Brunnabend et al., 2011). The time variable difference
between the model runs may be used to assess the model error. The median of the absolute
value of the difference is plotted in Fig. 3.3.

The development, and tedious task of tuning and running the model has been performed
at the Alfred Wegener Institute and falls outside the scope of this thesis (a detailed assess-
ment can be found in the Ph.D. thesis of S.-E. Brunnabend (Brunnabend, 2011)). The input
for this work consists of the derived ocean bottom pressure variations and its time varying
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Figure 3.3: Median error of the FESOM model. The error has been estimated from the dif-
ference between two model runs, each forced by distinct atmospheric forcings.
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Figure 3.4: Area weighted (median) error of the FESOM model. The area weighting ensures
that regions with a high density of vertices will not be overweighted in the inversion. The
error displayed is therefore representative for an area of 1990 km2(the median nodal area
of the model)
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uncertainties.

Two different spatial discretizations of the model are available. The first discretization
is relatively uniform with a resolution of about 1.5 degrees. These model realizations have
been used in Rietbroek et al. (2009, 2012b). More recently, the model resolution has been
refined such that the finite element vertices have separations between ~20 km in shallow
coastal areas to about 150 km in the open ocean (see Fig. 3.4). In this study, nodes in the
shallow part of the ocean (up to 600 m deep) have been removed from the joint inversions.

When the FESOM data is used in a least squares weighting scheme with other data,
the adopted errors determine the relative weight of the ocean model. In order to develop
a realistic weighting scheme, an ocean model error must be adopted, which takes into
account the model errors themselves and at the same time prevents overweighting the
model data in regions with a dense concentration of nodes. Therefore the following error
(σPi) has been adopted for the pressure at each node:

σPi =

√
Amed

Ai
med (|∆Pi(t0 · · · tn|)) . (3.8)

Here, Ai, denotes the cluster area1 of the node in question. The median cluster area of
all model nodes is denoted by Amed and amounts to 1990 km2. The time varying approxi-
mate error at the node i, is given by ∆Pi(t0 · · · tn), and is obtained from the difference of the
model runs. The median of this series, plotted in Fig. 3.3 is taken to be representative for
the model, and is consequently independent of time. Alternatively, it has been investigated
whether the root mean square or the the standard deviation of ∆Pi(t0 · · · tn) could be used
as a measure of the error. However, when considering the non-Gaussianity of the modeled
OBP differences and the non-zero time mean over most of the grid points, the median is
the most useful candidate.

The area weighted errors, in terms of equivalent water height, are plotted in Fig. 3.4. Up
to date, the error-covariance between different nodes have not yet been estimated and/or
accounted for, such that the adopted error-covariance matrix is assumed to be diagonal.

3.2.3 Ocean Bottom Pressure Recorders

At a selected set of oceanic locations, Bottom Pressure Recorders (BPRs) have been de-
ployed by various institutes (e.g. AWI, POL) to measure high frequency variations of the
local bottom pressure. A BPR is typically deployed in the deeper waters (> 1000 m), and pri-
marily consists of a pressure sensor. Auxiliary instruments, such as inverted echo sounders
are sometimes also added to the mooring.

The BPRs are commonly used as research instruments, where they are typically installed
and recovered after a certain amount of time (1-2 years). Scientific studies have interpreted
the signal and compared the time series with GRACE data in various regions (Kanzow

1amounting to one-third of the surrounding triangular surfaces
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et al., 2005; Rietbroek et al., 2006; Morison et al., 2007; Hughes et al., 2007; Macrander et al.,
2010; Rietbroek et al., 2012b). Additionally, in the framework of the DART project (Deep-
ocean Assessment and Reporting of Tsunamis, e.g. Bouchard et al. (2007)), BPRs are used
which send in near real time their data to telemetry buoys over an acoustic link.

Even at depths of 4000 m, the bottom pressure recorder can measure pressure changes
corresponding to a mm of water. The sustained extreme pressure may however cause metal
creep and long term volume changes in the instrument vacuum chamber. Furthermore,
the transient settling of the mooring in the ocean sediment is also suspected to introduce
(non-linear) drifts. Drifts and transient effects are often visible in the time series and their
removal is problematic, as the correction may also remove signal of interest.

The time series of various bottom pressure recorders are used as a validation dataset in
this work, and are therefore not part of the inversion themselves (for a sensitivity study
one is referred to Gebler, 2013). The time series are taken from the ocean bottom pressure
database of AWI (Macrander et al., 2010) who have assembled the publicly available time
series. The tides were corrected for using the EOT11a model (Savcenko and Bosch, 2012).
The deployment locations are visible in Fig. 5.8 of the results chapter.

3.3 GPS-derived Crustal Deformations

The global network of permanent GPS stations provide valuable data for the study of sur-
face loading. As described in Chap. 2.2, the changing surface load induces crustal defor-
mations, which provides the basis of the inverse problem of Sec. 4.1.

GPS measurement principle

surface
load

GPS 
Phase obs.

CM
CN

CF

Figure 3.5: The GPS phase
measurements provide
range information be-
tween the satellites and
the stations. The mea-
surement principle allows
the detection of geocenter
motion, since the GPS
satellites orbit the center
of mass of the Earth sys-
tem, whereas the station
network is sample of the
Earth’s surface.

However, many GPS station monuments are also sensitive to local effects such as for ex-
ample local subsidence due to ground water extraction. Furthermore, plastic deformations
in the plate collision zones do not obey the rigid plate model from Sec. 2.3.10. Conse-
quently, the screened subset of stations, which are suitable for the study of surface loading
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phenomena, should not be influenced too much by local phenomena and, maybe more
importantly, the network geometry should cover the Earth as homogeneously as possible.
Fig. 3.5, shows the GPS network as used in this thesis.

RMS (Height comp.) of GPS stations

−60˚ −60˚

0˚ 0˚

60˚ 60˚

RMS (Height comp.) of GPS stations

−60˚ −60˚

0˚ 0˚

60˚ 60˚

5 mm

10 mm

Figure 3.6: Positions of the 316 GPS stations contained in the reprocessing data. The size of
the symbols indicate the RMS of the height component over an eight year period 2003-
2010 (without trend).

To be as consistent as possible, the station positions and the orbits of the GPS satellites
should be estimated simultaneously. In this way, the network may be expressed in the
CM frame. With GPS measurements only, the absolute orientation of the network and
orbit constellation, is not uniquely defined. This manifests itself as a rank defect in the
GPS normal equation systems, which can only be solved by adding new constraints. Most
notably, VLBI (Very Long Baseline Interferometry) is needed to constrain the Universal
time (UT1) (Rothacher et al., 1999).

During the GPS data processing, dry and wet tropospheric delays are corrected for. In
addition, a higher order ionospheric correction has been applied (Fritsche et al., 2005). Fur-
thermore, the station positions have been corrected for the Solid Earth tides (IERS 2003,
McCarthy and Petit, 2004), and ocean tidal loading. In some of the used versions a loading
correction, derived from the GRACE de-aliasing product (AOD1B RL04), has been addi-
tionally applied. The radiation pressure acting on the GPS satellites, has been accounted
for by the CODE model (and the older ROCK model for comparison, see Fritsche et al.,
2009).
The mean station positions and velocities, estimated from the reprocessed data, have been
removed, to obtain residual deformations. Furthermore, during the estimation of the secu-
lar reference frame discontinuities in the GPS station time series have been estimated and
removed.

The (re)processing of the raw GPS data, takes significant amounts of time, and is not
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3.3 GPS-derived Crustal Deformations

part of this thesis. In this work, I use the data from the reprocessing efforts of the TU
Dresden/TU Munich/GFZ (Rülke et al., 2008; Fritsche et al., 2009; Steigenberger et al.,
2006). Cartesian GPS station positions augmented with the Earth Orientation Parameters
(EOP) are provided as SINEX files with their full error-covariance information in the form
of weekly normal equation systems. The parameters of the GPS satellite orbits are reduced
(implicitly solved, see App. C.2). In earlier work, GPS network deformation and its full
error-covariance from the international GNSS service (IGS) have been used as input for the
joint inversion Rietbroek et al. (2009). The advantage of using the reprocessed data , is that
the unsolved normal equation systems are available without any constraints applied. This
allows a more consistent combination compared to the standard IGS products. Similar to
the GRACE data, the inversion of the data is postponed until after the combination.

3.3.1 Pre-processing of GPS Normal Equation Systems

In a preprocessing step, the deformation associated with the ocean pole tide (Desai, 2002)
has been removed from the data by changing the a priori vector of the normal equation
system (see App. C.3). Although this effect is small (maximum deformations in the order
of 0.5 mm), it makes the systems consistent with the GRACE data. For the same reason, the
loading effect from non-tidal mass variations of the ocean and atmosphere are removed
from the station deformations. These corrections are derived from the GRACE de-aliasing
model, up to degree and order 100.

The Earth orientation parameters, still present as unknown parameters, are fixed to the
values which are used in the GRACE processing (See App C.3,C.4). This procedure then
also removes the rank defect caused by UT1, as discussed earlier.

When used in the joint inversion, the parameter space of the normal equations needs
to be converted from station positions to spherical harmonic surface loading coefficients
(see Sec. 4.1). After that step, it will be difficult to apply (or estimate) residual Helmert
transforms, as the station positions are removed from the parameter space. These Helmert
transformation are useful as they allow the absorption of erroneous network effects, which
are linked to GPS-specific processing errors (see Sec. 5.1.2 for a discussion of the estimated
Helmert parameters). It should be reemphasized that these rigid transformations may be
estimated simultaneously with the degree 1 surface loading components, which linked to
the deformation of the network. To accommodate network transformation at the joint inver-
sion stage, 7 Helmert parameters are introduced in the original normal equation systems.
This corresponds to applying the following transformation to the station coordinates:

x†
i =

[
Hi I

] [tH
xi

]
. (3.9)

Obviously, the transformation introduces 7 rank defects in the system. In a joint in-
version, these rank defects may be constrained by the GRACE and OBP data. However,
in a GPS-only inversion these rank defects prohibit the inversion of the normal equation
system. One way to mitigate this, is to apply an additional network constraint on the re-
maining station positions. In that case, the transformation and optional regularization of
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the normal equation system may be written as:

Ñ =

[
HTNH HTN

NH N + αΘc

]
,

b̃ =

[
HTb

b

]
. (3.10)

Here,

H =

H1
...

Hk

 , (3.11)

is a composite block matrix incorporating all station positions.
The regularization matrix Θc, constrains the position of the barycenter, orientation and

scale of a network of core stations as indicated by the subscript ’c’. Θc can be constructed
using a generalized inverse:

Θc = Hc(HT
c Hc)

−1D−1
H (HT

c Hc)
−1HT

c . (3.12)

The diagonal matrix DH determines the strength of the constraint:

DH = diag
[
σ2

tx
σ2

ty
σ2

tz
σ2

s σ2
rx

σ2
ry

σ2
tz

]
. (3.13)

In Rietbroek et al. (2012b), the weighting was chosen according to: σtxyz = 0.1mm, σrxyz =
3µarcsec and σs = 0.01ppb.

When α > 0, the station positions of the normal equation systems are now associated
with the center of network, and the offset of the CM from CN is given by the three trans-
lational Helmert parameters. Unfortunately, the above method also introduces a certain
stiffness in the core network. As α is increasing, the core network stations are pushed to-
wards a configuration whose degrees of freedom are restricted to the 7 Helmert parameters.
For the joint inversions of this thesis, these constraints are not necessarily needed, and are
therefore not applied (i.e. α = 0).

In order to link the station deformations to surface loading coefficients, the Cartesian
station coordinates of the normal equation systems are rotated in the local station frame
(up, north, east), by a matrix Ri

3×3. This is a more natural choice for surface loading effects.
The normal equation system are rotated by the following operation:

N̆ = RÑRT,

b̆ = Rb̃. (3.14)

Where the block-diagonal rotation matrix is build up from the station specific rotation ma-
trices

R =


I7×7 0 . . . 0

0 R1
3×3 . . . 0

...
...

. . .
...

0 0 . . . Rk
3×3

 . (3.15)
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This chapter covers the inversion schemes used in this thesis. The relation of the data to
the estimated parameters is described, and linked to the theory of Chap. 2.

Essentially, two types of inversion are elaborated upon. The first one aims at the esti-
mation of weekly variations of surface loading. These are expressed in spherical harmonic
coefficients up to degree and order 30. These low resolution fields aim to describe large
scale mass variations from terrestrial hydrology, the ocean and the atmosphere. The data
which flows in the inversion are GRACE, GPS and simulated OBP in the form of pseudo-
observations. This approach differs from a formal assimilation scheme, where the ocean
model is improved by the data. In the joint inversion scheme proposed here, the simulated
OBP merely serves as a priori information used to improve and stabilize the solution. In
contrast, an assimilation scheme would use the data to stabilize the models state vector,
which contains a broad array of model parameters besides surface loading. Thus, in the
joint inversion, the parameter vector of interest is not the state vector of the ocean model
but the ocean bottom pressure (or surface loading variations). Furthermore, the solution
domain also covers the continents, which is outside the realm of the model. In addition,
the proposed inversion also allows for the estimation of a mass correction for the model.

The second inversion scheme aims at estimating slowly varying changes of sea level,
induced by the melting of the major ice sheets, land glaciers and continental hydrology.
Furthermore, the use the combination of GRACE and altimetry in this inversion allows the
separation of the mass component from the steric component. In contrast to the first inver-
sion scheme, the unknown parameters are time varying scales associated with predefined
patterns of cryospheric melting, hydrology, steric changes, etc. This setup is referred to as a
’fingerprint’ inversion (Plag and Jüttner, 2001), as each phenomenon is linked to its unique
pattern (see Fig. 4.9).

Both types of joint inversion have their justification. In the first scheme, generic surface
loading is solved for with high temporal resolution. The parameters of the second ’finger-
print’ inversion form a much more restricted set of parameters, but allow for a meaningful
geophysical separation of the different surface loading contributions on longer time scales.

4.1 Estimation of Global Surface Loading

A joint inversion provides the opportunity to estimate parameters from ill-posed prob-
lems, which would have been impossible to estimate from a single data set only. Fig. 4.1
visualizes this principle for the current inversion scheme, where weekly surface loading
coefficients are estimated up to degree 30. The relatively low truncation degree evolved
from the sparser ground track of GRACE associated with the higher (weekly) temporal
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resolution.

Figure 4.1: The joint inver-
sion scheme allows resolv-
ing parts of the solution
space, which could not
have been resolved by sin-
gle techniques alone (the
null-space). For example,
geocenter motion, unre-
solved by GRACE is con-
strained by GPS and the
simulated OBP. On the
other hand, regions not
covered by GPS may be
effectively constrained by
GRACE and OBP. In addi-
tion, mass corrections for
the model are resolved by
GPS and GRACE.
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As can be seen, the ’null-space’ of the single techniques, would cause problems when es-
timating, (1) the geocenter motion (GRACE), (2) surface loading in poorly sampled regions
(GPS), and (3) the total mass of the ocean model. In the joint inversion, these phenomena
can be estimated simultaneously.

4.1.1 Observation Equations

GRACE
In this work, weekly surface loading coefficients up to degree and order 30 are the un-
known parameters to be estimated. They can be related to the Stokes coefficients as mea-
sured by GRACE (see Eq. 2.36)

δCnm =
1 + k′n
2n + 1

3ρw

ρe
Tnm, n > 1, (4.1)

where it must be noted that, since the potential field from GRACE is provided in the CM
frame, the relation does not include the effect of degree 1. It is obvious that the observation
equation above is linear, and the GRACE normal equation systems can consequently be
transformed in terms of the parameters Tnm (see App. C.5):

NGRC = DND,
bGRC = Db. (4.2)

58



4.1 Estimation of Global Surface Loading

Here, the diagonal matrix D contains the entries from Eq. 4.1.

GPS
Furthermore, using loading theory, the surface deformation may also be written as a (lin-
ear) function of the surface loading coefficients (Eqs. 2.29, 2.31):

δh
δe
δn


i

=
3agρw

ρe

Nmax

∑
n=1

n

∑
m=−n

1
2n + 1

h
′
nȲnm(θi, λi)
l
′
n∂Ȳnm(θi ,λi)

sin θ∂λ
−l
′
n∂Ȳnm(θi ,λi)

∂θ

 Tnm + ε. (4.3)

As is the case for GRACE, the maximum degree, Nmax, is set to 30. The entries of the double
summation can be written in the form of a matrix B such that the pre-processed GPS normal
equation systems (Eq. 3.14) are transformed as follows:

NGPS =

[
I7×7 0

0 BT

]
N̆
[

I7×7 0
0 B

]
bGPS =

[
I7×7 0

0 BT

]
b̆ (4.4)

In this way, 7 weekly Helmert parameters are also inherited from the GPS normal equation
systems.

As illustrated in Sec. 2.3.6, the degree 1 load Love numbers are frame specific. For the
joint inversions, no network constraints (α = 0 in Eq. 2.3.6), have been applied, and the
local station residuals are described in the CM frame. In line with this, the CM degree 1
load Love numbers have been used above. Otherwise, with constraints applied, it makes
more sense to use the degree 1 load Love numbers associated with the CF, as the station
residuals are described in the CN system. Since the center of network approximates the CF,
the Helmert parameters then describe small discrepancies between CF and CN.

Many stations with relatively short time series, also produce time series with spurious
signals. For this reason, stations which contain less than 52 weeks (i.e. spanning on average
less than a year), are rejected from the solution. In earlier research (Rietbroek et al., 2009) a
weekly outlier method (based on a 3σ rule) was additionally implemented, which removed
GPS stations which showed anomalous displacements relative to a low degree (7) uncon-
strained GPS-only inversion. Further techniques to remove or reduce the impact of outliers
have been extensively described by van Loon (2008). However, the reprocessed GPS data
is much more homogenous, so that virtually no stations exhibit anomalous behavior. Fur-
thermore, the outlier detection method has the tendency to skim off some good quality
stations when their surface loading reaches its annual peak. For this reason, I refrain from
rejecting weekly outliers in the current study.

Simulated OBP
The ocean bottom pressure variations from the model do not account for the time-variable
geoid. The geoid will move over time, due the changing surface load, while the models
assumes a static geoid. The modeled OBP therefore represents the surface loading compo-
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nent, expressed in equivalent water height, relative to the instantaneous geoid:

δPi

gρw
= ∆M0 + a

Nmax=30

∑
n=1

n

∑
m=−n

(
1− 1 + k

′
n

2n + 1
3ρw

ρe

)
Ȳnm(θi, λi)Tnm + ε. (4.5)

The left hand side denotes the modelled pressure expressed in equivalent water height.
The observation equation is augmented with a uniform mass correction, ∆M0. Although
a uniform Greatbatch correction is applied in the model, the variations of the simulated
ocean mass depend entirely on the external data, and may contain errors. For this reason,
the uniform correction is introduced as an unknown parameter, such that it can be con-
strained by the GRACE and GPS data. Again, the above observation equation is linear,
allowing it to be written in a diagonal matrix form, D

Using the pressure variations at the model nodes, and incorporating the approximate
diagonal model error-covariance, COBP from Fig. 3.4, a normal equation system can be
built:

NOBP = DTC−1
OBPD,

bOBP = DTC−1
OBP

δP− δP0

gρw
, (4.6)[

lTPl
]

OBP
= (

δP− δP0

gρw
)C−1

OBP(
δP− δP0

gρw
).

To make the system consistent with their GRACE counterparts, the reference vector, δP0,
contains the ocean and atmospheric components from the de-aliasing model as used in the
GRACE processing.

4.1.2 Combination and Weighting of GRACE, GPS and OBP

After preparing the data, the information from GRACE, GPS and OBP may be merged in a
combined normal equations system, Ncomb, bcomb (see App. C.6). In addition to the surface
loading coefficients, 7 Helmert parameters and the mass correction parameter are included
in the unknown vector xcomb. The individual normal equation systems are padded with
zeros to accommodate these parameters before combining them according to

Ncomb =
1

σ2
GRC

NGRC +
1

σ2
GPS

NGPS +
1

σ2
OBP

NOBP,

bcomb =
1

σ2
GRC

bGRC +
1

σ2
GPS

bGPS +
1

σ2
OBP

bOBP,

[lT
0 Pl0]comb =

1
σ2

GRC
[lT

0 Pl0]GRC +
1

σ2
GPS

[lT
0 Pl0]GPS +

1
σ2

OBP
[lT

0 Pl0]OBP. (4.7)

The observation groups are scaled by the corresponding a priori σ’s. For the joint in-
version schemes used here, these are estimated by means of VCE (Variance Component
Estimation, see App. C.6). The resulting time variation of σOBP, σGRC, and σGPS, is plotted
in Fig. 4.2. Clearly, σGPS remains more or less constant in time, indicating a posteriori error
of about 1.4 times the formal error. The variance component of the FESOM derived bottom
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4.1 Estimation of Global Surface Loading

pressure fluctuates most strongly, and displays a seasonal signal. A possible explanation
can be that seasonal signal may be slightly underestimated in the model.

The error model of the FESOM data contains only diagonal elements, which conse-
quently means that correlations among the model nodes are unaccounted for. To mitigate
this effect, an empirically derived factor of five is additionally used to downweight the
model error-covariance, after the VCE weights are computed. This reduces the weight the
model has in the inversion and also increases the correlations of the joint inversion with in
situ bottom pressure recorders slightly (see Sec. 5.1.5). It is expected that this downweight-
ing can be avoided when appropriate error-covariance functions become available for the
model error.
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Figure 4.2: Estimated variance components, σ0, of the joint inversion of GRACE (RL05),
GPS and FESOM data.
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Figure 4.3: Diagonal data contributions at the level of surface loading coefficients for
GRACE, GPS and OBP in the joint inversion. σ2

OBP is additionally downweighted by
a factor 5. Note the scale difference for GPS.

To get an impression on how much each data type contributes to the inversion, the di-
agonal of the redundancy matrix (App. C.6) is plotted in Fig. 4.3. Since the weights also
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change over time, two weeks have been considered with strongly differing FESOM weights
(see Fig. 4.2). The formal contributions of the datasets to the lowest degree coefficients have
been zoomed in for clarity.

From the triangle plots it becomes clear that the FESOM data contributes mostly to the
inversion at the higher degrees. Where most of the geophysical signal is occuring, the lower
and mid degrees, GRACE is the major contributor. At first sight, the GPS data appear to
have only a minor contribution to the joint inversion. It plays however an important role
for the degree 1 coefficients, as it is the only data source which provides coverage over the
continents. Furthermore, all surface loading coefficients are global parameters. Therefore,
by eye-balling Fig. 4.3 it is hard, if not impossible, to see that some data types contribute
more strongly in different regions (e.g. the GPS contribution will be larger in Europe be-
cause of the denser GPS network there).
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Figure 4.4: Degree variances of the signal and error of the combination solution, a GRACE-
only solution, and a background model containing hydrology and the GAC product.
The shaded regions span the variations of the weekly solutions over the year 2006. A
solid and dashed boundary indicate the signal and noise respectively. The combination
solution and GRACE have no background models restored.

A peculiar feature is seen in the sectorial bands (n = m) implying a relatively strong con-
tribution of GRACE accompanied by a weak contribution of OBP. At first sight, one might
suspect that the area weighting of the FESOM data may have been too strong, and that the
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4.1 Estimation of Global Surface Loading

equatorial band, which can be represented by a linear combination of sectorial harmonics,
is now under-weighted with respect to the other nodes. However, a closer inspection of
the normal matrices indicates that the cause lies in the covariance information of GRACE.
From the formal error of the weekly GRACE-only solutions, one can see that that sectorials
are more accurate than their immediate neighbors (not shown here). A secondary line, es-
sentially the sectorial shifted by three orders, is also visible in GPS week 1600. This feature
is also related to the GRACE covariance information. The exact cause of these features re-
mains unclear, but it is probably related to the weekly ground track patterns of GRACE.

Since OBP and GPS data are combined, the formal errors of the joint inversion are ex-
pected to be smaller than those of a single inversion. Additionally, the GRACE errors,
increasing for higher degrees, are likely to be dampened. This can can be seen from Fig.
4.4, where degree variances of both the signal and error are plotted. Since different weeks
are not behaving in the same way, the spread of the weekly solutions in the entire year 2006
are plotted as regions. A secondary plot shows the non-seasonal signal, where a seasonal
fit, performed at the coefficient level, was removed first. Clearly, the signal of the com-
bination solution is smaller than that of the GRACE signal at the higher degrees. This is
the consequence of the information from FESOM, which effectively constrains the noisier
GRACE data at the higher degree part of the spectrum, as can be expected from Fig. 4.3.
This behavior is also reflected in the formal errors of the combination solution, which lie
below the errors from GRACE. The removal of the seasonal signal, decreases the signal
mostly in the lower degrees.
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Figure 4.5: Correlations of the error-covariance matrix of a joint inversion from GRACE,
GPS and modeled OBP data versus the correlation obtained from a GPS and OBP com-
bination. The week considered is GPS week 1353 (centered at the 14th Jan 2004).

Up to now, only the diagonal part of error-covariance matrix has been discussed. How-
ever, the full error-covariance information from the inversion may also provide interesting
insights. Fig. 4.5 shows a subsection of the formal error-correlation matrix of two types
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of the joint inversion. On the left hand side, all data types are used, whereas at the right
hand side the GRACE data is removed. Clearly, the correlation between the surface load-
ing coefficients is lower when GRACE data is used. This illustrates that the GRACE data
allows a better separation of the coefficients, at least on the formal side. Since GRACE per-
forms well at the low degrees coefficients this is something which can be expected. A more
surprising feature hides in the decreased correlations of the degree 1 coefficients. Although
GRACE cannot measure the degree 1 surface loading coefficients directly, its addition in the
joint inversion does improve the separability of the degree 1 coefficients from themselves
as well as from other parameters (e.g. model bias and other surface loading coefficients).
This feature is important but will be hardly visible in the formal (diagonal) errors of the
solution.

4.1.3 GPS-only Inversion

It is possible to invert for surface loading using only GPS data (Blewitt and Clarke, 2003;
Kusche and Schrama, 2005; Fritsche et al., 2009). However, only a relatively low resolution
is possible, roughly speaking up to degree and order 10. The technique is promising as GPS
data may be used to fill the gap between GRACE and a follow-on mission. Furthermore,
the method may be used to extent the series back in time. This may be particularly inter-
esting for the improved orbit determination of altimeters, in the periods before and after
GRACE.

A complication with GPS-only inversions is the heterogenous network, which exhibits
large gaps over the ocean and the southern Hemisphere. This problem will manifest itself
as noise in the form of a strongly fluctuating solution over the ocean. Blewitt and Clarke
(2003) solved this problem by forcing the solution over the ocean to the self-consistent sea
level surface (See Sec. 2.4.1). This method works as a strong constraint over the ocean, but
this does not allow any other signal to be fitted which deviates from the self-consistent sea
level. Kusche and Schrama (2005) applied a more flexible regularization technique, which
constrained the ocean part of the solution towards zero. However, the regularization also
biases the ocean mass towards zero, affecting the expected seasonal behavior (annual am-
plitude of ~9 mm Rietbroek et al., 2009).

Here, an alternative approach is proposed, which smoothly regularizes the solution over
the ocean towards the self-consistent sea level. The method integrates the approaches of
Kusche and Schrama (2005) and Blewitt and Clarke (2003). Over the ocean, the difference
between the surface load and the self-consistent sea level (Quasi-spectral), as induced by
the land load, can be written as:

∆Toce = O(λ, θ)
(
T(λ, θ)− S̃(λ, θ)

)
. (4.8)

The linearity of the Sea Level Equation (Eq. 2.83) allows a matrix notation in terms of
coefficients:

a∆toce = O (at−GS̃GN−Uh) . (4.9)

The vector, t, contains the stacked coefficients of the surface loading coefficients. The land
load, h, can also be written in terms of the surface load (see App. B.2), such that the differ-
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4.1 Estimation of Global Surface Loading

ence vector ∆toce becomes:

∆toce = O (I−GS̃GN−U(I−O)) t = Ft. (4.10)

Loosely speaking, the equation above can be thought of as an observation equation.
When the expected value is zero, E{∆toce} = 0, a regularization matrix can be constructed
as

Ψoce = FTC−1
∆t F. (4.11)
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Figure 4.6: Averaged signal degree variances of weekly variations of residual surface load-
ing from continental hydrology, and the difference between the release 05 and release 04
background model (GAC). The data span the years 2002-2007. The centered line in the
ensembles represents its RMS.

Since the surface loading signal has a red spectrum, it can be expected that the error-
covariance, C∆t, shows a similar behavior. To approximate C∆t, firstly a realistic residual
signal has been constructed by augmenting the total water storage output of the hydrolog-
ical WaterGAP model (Döll et al., 2003) with the difference of the ocean/atmosphere (GAC)
product from RL05 and RL04. The averaged degree variance of this signal is plotted in Fig.
4.6. In analogy with Eq. 4.9, this signal is then multiplied by the ocean function (see App.
B), to obtain realistic variations of ∆toce. The ocean function removes most of the terrestrial
land signal, which can be seen from the lowering of the curves in Fig. 4.6. Over the consid-
ered years 2002-2007, a diagonal covariance, C∆t is contructed from the square of the RMS
of the simulated ∆toce. This diagonal covariance is then used in Eq. 4.11 to compute the
regularization matrix Ψoce.

The impact of the constraints on the solution is very strong. Fig. 4.7 shows for the GPS
week 1400 a GPS-only solution solved up to degree and order 10. Both a regularized and
unregularized solution is plotted. By inspecting the figure it becomes clear that an uncon-
strained GPS solution yields unacceptably large variations over the ocean as this part of
the solution is virtually not constrained by data. The caveat is that, such ocean-based os-
cillations are not directly obvious from unconstrained surface loading coefficients or their
errors, as they represent globally averaged values.
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Figure 4.7: GPS-only surface loading solution up to degree and order 10, for GPS week 1400
(centered on 8th Nov. 2006). Left: solution without regularization, right: solution with
constraints over the ocean.

Potentially, the maximum spherical harmonic degree can be further increased. van Loon
(2008) computed solutions up to degree and order 14. In regions with a dense GPS net-
work, such as Europe, GPS only inversions, up to degree 15 (not shown here) perform well.
The downside of increasing the resolution is that the solution in the regions with bad GPS
coverage will oscillate spuriously. To mitigate this to some extent van Loon (2008) added
more constraints over land where the signal is expected to be small. Alternatively, cleverly
placed radial basis functions (see Eicker et al. (2013) for a discussion) may be used to cope
with the heterogenous GPS distribution, but this has not been applied to GPS up to now.
In this study, the degree 10 solution is used since it represents a good overall compromise
between resolution and amplification of noise at higher degrees.

4.1.4 Basin Averaging and Filtering

For many studies it is of interest to compute the average surface load in a certain (large)
region. This averaging operation can be performed both in the spatial domain or in the
spectral domain. The latter method is explained in more detail here. A basin average can
be computed by integrating over the basin function ϑ(λ, θ) and dividing by its surface area,

T̄ϑ =

∫
Ω ϑ(λ, θ)T(λ, θ)dω∫

Ω ϑ(λ, θ)dω
. (4.12)

A spectral representation of T and ϑ can now be substituted. Using the orthogonality
relation (Eq. 2.6) one then finds

T̄ϑ =
1

ϑ00

∞

∑
n=0

n

∑
m=−n

ϑnmTnm. (4.13)

In practice, one always needs to truncate the series at some maximum degree Nmax. Fur-
thermore, since the data is often noisy, it is desirable to apply a filter to the surface load.
Unfortunately, whereas the noise in the data is decreased by the filter and truncation, an
attenuation of the signal may result, which is known as leakage-out. Likewise, a leakage-
in effect may occur as the filter causes signal from the surrounding region to contaminate
the basin average estimate. These leakage effects may be compensated to some extent by
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4.1 Estimation of Global Surface Loading

applying a rescaling factor, denoted by fϑ, to the basin average. In matrix notation the
approximated basin average reads:

T̄ϑ ≈ T̃ϑ =
fϑ

ϑ00
ϑTWt. (4.14)

Here, the filter operation is restricted to a linear matrix multiplication by a filter matrix
W. This type of filter includes a whole family of filters commonly applied in geodesy (e.g.
an isotropic Gaussian filter Jekeli (1981); Wahr et al. (1998) or various anisotropic filters
Swenson and Wahr (2006); Kusche (2007); Kusche et al. (2009); Klees et al. (2008)).

The averaging operation of Eq. 4.14 can also be seen as convolving the surface load by a
smoothed basin function (Fenoglio-Marc et al., 2012):

ϑ̃ = WTϑ. (4.15)

Since the filter matrix is not necessarily symmetric one must ensure that the transpose of
W is applied to the basin coefficients. Fig. 4.8 shows examples for the case of the Mediter-
ranean and Black Sea, which have been used in Fenoglio-Marc et al. (2012).
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Figure 4.8: Smoothed basin kernels of the Mediterranean and Black Sea. The anisotropic
filter (DDK3) comes from Kusche et al. (2009).

The scaling factor, fϑ, may be derived empirically through various methods. Principally,
it depends on the signal of interest, the truncation degree and the geometry of the basin
(Velicogna and Wahr, 2006a; Fenoglio-Marc et al., 2006, 2012; Baur et al., 2009). Further
on in Sec. 5.1.6, averages over a variety of basins are computed. For each of these basin
averages, a scaling factor, fϑ, is computed using the new method described below and in
Rietbroek et al. (2014). Since the dominant component of the hydrological cycle, is annual,
the first objective is to see how this seasonal signal is attenuated, for different truncations
and filters. Firstly, a hydrological reference signal is obtained from the WGHM model (Döll
et al., 2003). The simulated data, with daily resolution, were first expressed in terms of sur-
face loading coefficients up to degree and order 120, and averaged over the GPS weeks, for
the period 2002-2007. Subsequently, seasonal cosine and sine amplitudes1 were estimated
coefficient-wise.

1the intersect and a trend relative to 2005 were fitted simultaneously.
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The linear representation allows the annual cosine and sine coefficient to be filtered sepa-
rately such that the annual harmonic of the filtered and truncated basin average looks like:

T̄c
ϑ cos(Ω(t− t0)) + T̄s

ϑ sin(Ω(t− t0)) = ϑ̃
Ttc cos(Ω(t− t0)) + ϑ̃

Tts sin(Ω(t− t0) (4.16)

Here, the cosine and sine annual amplitude of the vectorized surface load are denoted by
tc/s. The annual frequency is denoted by Ω, and the cosine and sine amplitude of the basin
average of the hydrology model are contained in T̄c/s

ϑ . From the equation above it is trivial
to see that the cosine and sine amplitudes are related as follows:

T̄c
ϑ = ϑ̃

Ttc (4.17)

T̄s
ϑ = ϑ̃

Tts (4.18)
(4.19)

The rescaling factor now follows from the damped annual amplitude of the filtered ver-
sus unfiltered WGHM data.

fϑ =

√
Tc2

ϑ + Ts2
ϑ

T̄c2
ϑ + T̄s2

ϑ

(4.20)

Similarly, one can compute the expected phase shift, δta, for the annual signal:

δta =
1
Ω

[
arctan

(
T̄s

ϑ

T̄c
ϑ

)
− arctan

(
Ts

ϑ

Tc
ϑ

)]
(4.21)

Values for the scale factor and the phase shift are tabulated for the considered basins in
Tab 5.3.

4.2 Estimation of Fingerprint Magnitudes

The spherical harmonic representation used in Sec. 4.1, provides a complete and generic
basis for solving surface loading. In this section, a different approach is pursued where
each signal of interest is assigned a spatial ’fingerprint’ from auxiliary data. In doing so,
a dedicated set of basis functions together with their associated (time-dependent) coeffi-
cients may be superimposed and fitted to GRACE and altimetry data. This is graphically
depicted in Fig. 4.9.

A major advantage of these ’fingerprints’ over a spherical harmonic basis is that super-
imposed signals of different geophysical origin may be separated from each other based
on their spatial signatures. Similar to the null-space plot of the previous section (Fig. 4.1),
Fig. 4.10 shows this schematically for the joint inversion of GRACE and altimetry data.
The combination of GRACE and altimetry principally allows the separation of the steric
induced changes from the mass induced changes of sea level. With a ’fingerprint’ basis
these contributions can be further separated into their respective components (e.g. terres-
trial water changes, individual ice sheets, steric modes, ..), as will be shown in the results
5.2.
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Figure 4.9: Principle of the fingerprint inversion. In the inversion, the spatial patterns are
used as base functions. The associated time varying scales are fitted to the data.

The inversion considered here, focuses specifically on slowly changing phenomena but
does not restrict itself to pure linear trends. This is important, as sea level changes con-
tain a significant amount of inter-annual behavior which potentially renders a linear fit
insignificant on the time scales considered.
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Figure 4.10: The combi-
nation of GRACE and
altimetry, principally al-
lows the separation of the
steric sea level from the
mass induced sea level. A
further separation of the
superimposed signals into
its individual (melting)
sources, and steric modes
can be achieved by using
predefined fingerprints
from auxiliary data and
the implementation of the
sea level equation. the
fingerprints effectively
aid in this separation,
although they are not used
as a stochastic input.

4.2.1 Selected Fingerprints

The mass loading patterns and steric patterns used in the ’fingerprint’ inversion, come from
a variety of sources and are associated with different observables (e.g. Geoid change, uplift,
steric changes). Table 4.1 summarizes the amount and types of patterns which are available
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to the inversions discussed in this thesis. There are several changes which I made with re-
spect to the patterns used in (Rietbroek et al., 2012a). (1) I used a different discretization for
Antarctica, which allows a direct comparison with the results from Sasgen et al. (2012b). (2)
The number of steric EOFs is strongly increased and is based on updated temperature and
salinity from Ishii and Kimoto (2009). (3) The amount of GIA patterns derived from geo-
physical models is increased from 1 to 5. (4) The amount of hydrological EOFs is increased
to 60. The overall increase in the number of parameters allows a better representation of
the measurements.

The GRACE and Jason normal equation systems which are to be build contain the time-
varying magnitudes of all of these patterns as unknown parameters. These parameters
span a large enough solution space such that a variety of inversion setups can be obtained
from the same set of normal equation systems. This is done by solving, fixing and/or
merging the parameters of choice, at the normal equation level (see App. C).

Contribution Dimension Data/Ref. Observable
Greenland 16(Basins) Wouters et al. (2008) N, U, S
Antarctica 27(Basins) Zwally and Giovinetto (2011) N, U, S

Glaciers 16(Clusters)
WGI(NSIDC, 1999)
GLIMS(Raup et al., 2007) N, U, S

Hydrology 60(EOFs) WGHM(Döll et al., 2003) N, U, S

GIA
1 total +
5 decompos.

ICE-5G, VM2-2
Klemann and Martinec (2009) Ṅ, U̇, Ṡ

Steric 100(EOFs) Ishii and Kimoto (2009) hsteric
Compl. steric
(Bootstrap) 100(EOFs) This section hsteric + δhdyn

Table 4.1: Description of the patterns available to the inversion.

Ice Sheets
To parameterize the surface mass loading on the major ice sheets of Greenland and Antarc-
tica, the drainage divides from Wouters et al. (2008) and Zwally and Giovinetto (2011) were
used. As depicted in Fig. 4.11, Greenland is divided in 8 sectors, of which each sector is
subdivided in a section above and below 2000 meter elevation. The delineation of Antarc-
tica in 27 sectors is shown in the right of Fig. 4.11.

For each drainage basin, a self consistent sea level was computed using the SLE from
Sec. 2.4.1. Each drainage basin therefore results in a global surface load (ice+sea) which
conserves mass globally and which is associated with an equipotential ocean response.
From this surface load, (linearly related) observables such as geoid height changes, uplift
and relative sea level may be computed and linked to observations.

Land Glaciers
Most of the land glaciers are grouped in mountainous areas. Due to the sheer amount of
glaciers and their proximity to each other, it is not possible to estimate their contributions
individually. For that reason, the contribution of the glaciers are considered for clusters.
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Figure 4.11: Drainage basins in Greenland and Antarctica and the northernmost land-
glacier clusters. The drainage basins in Greenland, Antarctica are obtained from Wouters
et al. (2008) and Zwally and Giovinetto (2011) respectively. The locations of the land
glaciers are taken from WGI/GLIMS.

The glacier positions can be obtained from the GLIMS (Raup et al., 2007) and/or WGI
(NSIDC, 1999) databases. Since none of the two databases contains all glaciers2, I merged
them using the GRASS GIS software (GRASS Development Team, 2008). It should be noted
that many larger glaciers are represented by multiple points in the database (hence the large
amount of glacier sources in Fig. 4.12).

Each glacier cluster, indicated in Fig. 4.12, is constructed by extracting the position of
all the individual glaciers in the region of interest (for example the Himalayas) and adding
them as unit loads:

THimalaya(θ, λ) =
∞

∑
n,m

THimalaya
nm Ȳnm(θ, λ), (4.22)

with THimalaya
nm =

1
N1Gt

N

∑
i∈Himalaya

Ȳnm(θi, λi) (4.23)

The combined cluster surface load, represented by the spherical harmonic coefficient, THimalaya
nm ,

is normalized with the factor N1Gt such that the resulting surface load per cluster amounts
to 1 Gton. The above approach produces glacier cluster loads which are larger in regions
with a higher glacier density. The use of such clusters to represent land glacier loads, are

2at the time of writing efforts are underway to harmonize the two databases
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Figure 4.12: Geographical distribution of glacier clusters tagged with the corresponding
amount of sources as used in the inversion. Larger glaciers may consist of multiple
sources(taken from the WGI and GLIMS databases).

based on the following underlying assumptions: (1) all glaciers in the database are approxi-
mately the same size, and (2) the time behavior of the glaciers in one cluster is synchronous.
It is possible to reduce the effect of assumption (1) by using area dependent disk-loads in
Eq. 4.23. But since not all glacier areas are present in the database this poses a problem.
Furthermore, it is not necessarily true that the melting of glaciers is proportional to its size.
As is illustrated by simplified linear glacier ablation models (Huybers and Roe, 2009), the
change in glacier length mainly depends on the precipitation, the melt-season tempera-
ture and the length (size) of the glacier itself. Its sensitivity to these forcings is however
determined by glacier specific parameters, such as its basal slope. For the present study
however, this added complexity is assumed to average out over the entire cluster, and con-
sequently each glacier source is assumed to change according to a unit load. In addition,
I implicitly assume for now that the climatic characteristics (e.g. changes in melt-season
temperature and precipitation) are highly correlated within the clusters.

Steric Sea Level
There are several gridded datasets which contain observed temperature and salinity varia-
tions in the upper part of the ocean (Hosoda et al., 2008; Ishii et al., 2006; Ishii and Kimoto,
2009). In this thesis, monthly temperature and salinity data from Ishii and Kimoto (2009)
are used. These are derived from an objective analysis (also known as optimal interpola-
tion) of data from ARGO floats and XBTs (eXpandable Bathythermograph). Regions which
are poorly sampled are constrained to monthly climatological values. This holds in particu-
lar for the deeper section of the data (700-1500 m). Changes below 1500 m are not provided.

From the depth dependent data, steric sea level changes have been computed using Eqs.
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2.121, in the upper 700 m of the ocean. The Gibbs Seawater Oceanographic Toolbox (Mc-
Dougall and Barker, 2011) is used to implement the equation of state of sea water.

A limited amount of patterns is needed to parameterize the steric variations of sea level
for the fingerprint inversion. These are obtained by a Principal Component Analysis (PCA3,
Preisendorfer and Mobley, 1988) of the steric heights. For completeness, a quick review of
the applied PCA method is provided in Appendix D. Steric heights from the period 1990
until 2012 are used in the analysis, such that the exceptionally strong El Niño event of 1997-
1998 was included.
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Figure 4.13: The first three spatial and temporal EOF modes of the steric height variations
derived from Ishii and Kimoto (2009) data. The percentages in the legend indicate the
variance explained by the mode.

The first 3 spatial and temporal modes of the steric sea level changes are shown in Fig.
4.13. Since the steric heights are provided on an equidistant grid, an additional weighting
by the cell area has been applied to prevent overweighting the data at higher latitudes. Be-
sides the seasonal variation which is visible as a north-south oscillation in the first mode,
it is clear that the El Niño La Niña cycle is apparent in the second and third modes (and in
other modes not shown here). The percentage of variance explained by the modes levels off
only slowly with the amount of EOFs. The first three modes only explain 52% of the vari-
ance in the ARGO-derived steric sea level. For that reason, 100 EOF modes are accounted
for in the inversion which explain almost 99% of the steric height variations.

3also known as Empirical Orthogonal Function analysis
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Bootstrapping Additional Steric Patterns from the Altimetry Residuals
Although placed before the combination step, this subsection is actually written in retro-
spect after the computation of a global combination (readers are referred to Sec. 4.2.3 for
more information when confusion arises). The reason is that, after an initial inversion, sig-
nificant large scale signals were present in the altimetry residuals, justifying an extension of
the steric pattern space as proposed up to now. Since the complementary patterns here are
essentially extracted from the data itself, this procedure is nicknamed as a ’bootstrapping’
procedure.

To justify this procedure, I computed the along-track altimetry residuals by propagating
the initial inversion results to the altimeter bins. The propagated solution contained all
relevant mass loading and steric patterns and constant altimeter offsets. These include 16
Greenland patterns, 27 Antarctic patterns, all land glaciers cluster, 5 complementary GIA
patterns, 60 hydrological patterns and 100 EOFs as obtained from the Ishii and Kimoto
(2009) data.

From the along track altimetry, the propagated solution and the residuals, global mean
sea level changes were computed. Furthermore, time varying grids were computed using
gridding software from the gmt toolbox (Smith and Wessel, 1990). The resulting grids do
not seem to be affected by altimetry specific (orbit) errors, so more advanced statistical in-
terpolation routines (e.g. Le Traon et al., 1998) are not deemed necessary at the moment.
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Figure 4.14: EOF modes obtained from the altimetry residuals

The global4 mean sea level changes, are plotted in Fig. 4.15, where ’Inv1’ denotes the
inversion without the (to be computed) bootstrapping patterns. Alarming is that, although

4restricted by the region as covered by the altimetric footprints
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the reconstructed total mean sea level change agrees to a large extent with the altimetry,
the residuals (bottom subplot) are as large as the seasonal variability of the reconstructed
steric sea level itself. Since the reconstructed steric sea level is in phase with the residual
it leads to the suspicion that the inversion significantly underestimates the steric sea level.
An alternative explanation could be that the estimated hydrological component, which is
out of phase with its steric counterpart (see Fig. 5.13), is overestimated. This appears how-
ever less likely as the GRACE data constrains hydrology in a more direct sense.

To study the spatial nature of the altimetry residual, I applied a principal component
analysis on the gridded residuals. However, since PCA may be strongly affected by few
grid points with large variances I filtered the residuals with a Gaussian filter with a half-
width of 200 km. This procedure reduces the variances in highly dynamic, but localized,
regions, such as those associated with boundary currents, whereas the relative strength of
large scale effects, which are of interest in the present context, increase.
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Figure 4.15: Geocentric mean sea level of the altimetry and residual

The first three resulting modes, explaining only 20% of the variance, are displayed in
Fig. 4.14. Clearly, the spatial nature of the patterns hint to remaining steric signals lying
outside the solution space of the Ishii-EOF modes, which are derived from gridded prod-
ucts in the upper 700 m of the ocean. The most obvious explanation, is that these signals
arise from effects occurring in the deeper layers of the ocean. Sampling problems with the
ARGO drifters are a less likely explanation as the signals are widespread compared to the
ARGO sampling. Finally, it is also possible that remaining errors in the background models
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are reflected in these patterns. Errors in wind-stress, inducing erroneous bottom pressure
changes through Ekman pumping, may potentially leak into the residuals. It should be
stressed that, since the first order effect is already subtracted from the altimetry data by
using the reference ocean model (OMCT), the remaining effects are expected to be at the
level of the error of the ocean model itself.

The time dependency of the principal components is dominated by seasonal behavior
overlying strong trends. This suggests that neglecting these modes potentially introduces
errors in the reconstructed sea level from the inversion. Indeed Fig. 4.15 clearly shows
that when 605 ’bootstrapping’ modes, explaining 86% of the variance, are introduced in the
inversion (denoted by ’Inv2’) the residual significantly decreases to an acceptable level.

It is worth noticing that natural oscillations such as the El Niño -La Niña cycle and the
pacific decadal oscillations are not apparent from the modes. The typical horse shoe struc-
tures are difficult to spot in the spatial modes and the time variations also appear to reflect
mainly seasonal variations and trends.

In summary, the steric patterns are obtained in a step-wise approach. Initially, only the
patterns reflecting changes in the shallow ocean are used in the inversion. These are then
augmented by deeper steric patterns which are obtained from an analysis of the altimetric
residuals.

Terrestrial Hydrology
A prominent source of mass variations originate from the dynamics of the terrestrial hy-
drological water cycle. In the fingerprint inversion, such variations must either be reduced
a priori or co-estimated in the inversion. The latter approach, pursued in this thesis, re-
quires a set of base functions which parametize the most dominant water storage signals
occurring in the terrestrial water cycle.. Similar to the steric height variations, these pat-
terns are obtained from a principal component analysis of the simulated total water storage
from WGHM (Döll et al., 2003). The model output also contains water storage variations
in regions where there are also land glaciers. This can potentially disturb the estimated
land glacier factors as the same glacier signal is contained in both the hydrological and
glacier fingerprints. For that reason, I excluded the glacier cluster regions from the princi-
pal component analysis. Also excluded from the analysis are the ocean region, Greenland
and Antarctica where the model provides no reliable data.

The first 60 EOFs are extracted from WGHM for further analysis. Since the EOFs repre-
sent mass changes on land, they also induce a self consistent sea level response. As with the
ice sheet variations and the glaciers clusters, I construct a global self-consistent response of
the ocean to each EOF. The resulting global patterns are then used as base functions in the
inversion. The global surface load of the first three modes are plotted in Fig. 4.16. Com-
pared to the continental load, the oceanic variations are an order of magnitude smaller.
Nevertheless large scale, ocean-wide are visible which may affect the low degree coeffi-
cients of the gravity field.

5a total of 100 EOFs were computed.
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Figure 4.16: The self consistent surface load as computed from the first three hydrological
EOFs from WGHM (Döll et al., 2003), and the associated time variations of the principal
components. The sign of the modes is adapted such that each EOF is associated with a
positive contribution to the ocean.

GIA
Finally, secular variations in geoid height, uplift and relative sea level are induced by glacial
isostatic adjustment. In this thesis, 5 different GIA simulations (present day rates) are used,
which were computed using a spectral finite element code(Martinec, 2000; Klemann and
Martinec, 2009)(simulations courtesy of Volker Klemann).

The applied ice history and the radially symmetric incompressible Earth model corre-
spond to ICE-5G (Peltier, 2004) and the associated VM2-2 model. Six different forcing
scenarios are available to the inversion: (1) the total effect of the entire ice-history, and
a partitioning in 5 different ice loads: (2) Laurentide, (3) Fennoscandia, (4) Antarctica, (5)
Greenland and (6) complementary sources. The truncation degree for this simulation is
relatively low (lmax = 64), but since most of the GIA signal has long wave-length charac-
teristics this is not expected to be problematic.

The individual contributions, in terms of uplift are shown in Fig. 4.17. Since the ocean
function is time dependent, the model runs from the single sources do not add up to the
results of the model run forced with the combined glacial load. The net difference is com-
parably small and is shown in the bottom right subplot of Fig. 4.17, although in some parts
it has the same order of magnitude as the uplift induced by the complementary sources.
Nevertheless, considering that there is a considerable spread in contemporary GIA simu-
lations, realistic GIA signals may be constructed by adding the contributions together, as
is assumed within the fingerprint inversion. Recent efforts, such as those within the Ice
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sheet Mass Balance Inter-comparison Exercise (IMBIE), aim at harmonizing available GIA
models in order to obtain more realistic estimates of the mass changes of the Earth’s ice
sheets (Shepherd et al., 2012; Spada et al., 2011).
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Figure 4.17: GIA uplift in mm/yr for the 5 different pattterns used in the inversion. The bot-
tom right subplot indicates the difference between the total GIA pattern (model forced
with the combined glacial sources) minus the reconstructed total uplift (adding the con-
tribtions from the isolated sources). Note the scale difference of the bottom two subplots.

Using the theory from Sec. 2.3, I converted the simulated geoid and deformation rate
from the CM to the CF frame, which is possible since the degree 1 signal from all three
observables (geoid, vertical and horizontal deformation) are provided. This step is done
since the (instantaneous) CF frame lies more closely to the reference frame origin of the
altimetry data compared to the CM.

The degree 0 coefficients of the geoid, and (horizontal and vertical) deformation were
initially set to zero. However, GIA induced changes in the volume of the ocean basin also
induce uniform shifts of the sea level which are sensed by an altimeter. A correction, ap-
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plicable to the observation equation of the altimeter, can however be computed as follows.
As discussed in in Sec. 3.2.1 an altimeter will sense changes in geocentric sea level

S̃ + U = N +
∆φ

g
. (4.24)

The uniform shift, δφ
g , manifesting itself as the degree 0 coefficient of the quasi spectral sea

level S̃, can be computed by imposing that the ocean mean of the GIA induced relative sea
level is zero:

S̄oce = 0 =
1

AOce

∫
Oce

S̃dω. (4.25)

Substituting Eq. 4.24 and isolating ∆φ
g yields

∆φ

g
= − 1

AOce

∫
Oce

(N −U)dω. (4.26)

In the spherical harmonic domain, this correction is computed from the fully normalized
Stokes coefficients Cnm and the uplift coefficients Unm which then simply reduces to 6:

S̃00 = − 1
O00

lmax

∑
n=1

n

∑
m=−n

Onm(aCnm −Unm). (4.27)

Underlying this correction is the assumption that the ocean mean of the relative sea level
rise is zero. This assumption is quite realistic as the present day mass flux of the ICE-5G ice
history model is virtually zero. Or in other words, the mass content of the ocean does not
change due to GIA as the ice history does not exhibit a present day rate of melting.

4.2.2 Observation Equations of the Fingerprint Inversion

GRACE
Changes in the Stokes coefficients from GRACE are linked to the mass related components
of the fingerprints. The unknown time varying magnitude can be linearly linked to the
Stokes coefficients of GRACE: δC20

...
δCnmaxnmax

 = A


xice
xglac
xhydro
xgia

+ ε. (4.28)

Since mass is conserved globally, and the GRACE data has its reference frame origin in the
center of mass of the Earth system, only coefficients with degrees larger than 1 are consid-
ered. This automatically transforms all of the fingerprints to the CM frame. The unknown
time varying magnitudes, are grouped in different mass contributions. xice represents the
factors associated with the ice sheets in Greenland and Antarctica, xglac contain the mag-
nitudes of the remaining (clusters of) land glaciers, and xhydro is linked to the terrestrial

6see also Eq. 4.13 for the spectral representation of a basin average
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hydrological variations. The variations due to glacial isostatic adjustment effects are con-
tained in the vector xgia.

The columns of the design matrix A are composed of the corresponding fingerprints
expressed in terms of normalized Stokes coefficients:

A(t) =

δCGreenland1
20 δCGreenland2

20 · · · δCgiaN
20 (t− t0)

...
...

...
δCGreenland1

nmaxnmax
δCGreenland2

nmaxnmax
· · · δCgiaN

nmaxnmax(t− t0)

 . (4.29)

For convenience, the fingerprints of the ice sheets and the land glaciers are normalized
such that its mass contribution represents 1 Gton. In this way, the unknown factors x can
be directly interpreted as eustatic sea level contributions in the units Gtons. It should be
noted that no such normalization is applied in the case of the GIA contribution. Since the
present day GIA component of relative sea level rise is zero, a division by zero would be
the result. Furthermore, a normalization is also not recommended when using EOFs as
base functions (which is the case for the hydrological and steric parameters). Often, there
are EOFs which have a (almost) zero contribution to sea level. A normalization would then
induce large scale differences between the columns of A.

The GIA induced signal has a secular nature, the corresponding GIA potential rates are
therefore scaled by the time difference with respect to the reference time t0. For the release
05 GRACE data, the 1st of January 2005 is used, which is the reference time of the static
background model Eigen-6c. Currently, the GIA component is the only time dependent
factor in the design matrix. It is therefore smarter to store only the time independent part,
without (t− t0), of the matrix and introduce this time dependency at the level of the nor-
mal equations as described in App. C.5.

Monthly normal equations of GRACE release 05 are available up to degree and order
180. In addition to the standard de-aliasing models, the time variable component of the
Eigen-6C is removed a priori (in the standard GRACE solutions, this signal is restored). To
make the signal consistent with the altimetry data, the time varying component is restored
on the normal equation level in accordance with App. C.3. On top of that, I also apply an
a priori correction which ensures that the background de-aliasing model has a zero mean
over the ocean. This makes the signal content consistent with that of the altimeters, and
it prevents the background models to introduce artificial changes in the ocean mean. The
latter potentially cause (systematic) errors in the estimated parameters.

This large truncation degree of the normal equation systems does not allow a direct so-
lution of all the Stokes coefficients. However using the transformation method of App.
C.5, the normal equation systems may be transformed in terms of fingerprint magnitudes,
without the need for solving but with retaining the full information up to degree and or-
der 150. Coefficients with degrees larger than 150 are eliminated from the normal equation
systems.
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N†
GRC = ATNA,

b†
GRC = ATb, (4.30)

[lTPl]† = lTPl. (4.31)

The transformation operation drastically reduces the amount of unknowns, and thus the
storage requirements, of the normal equation system from approximately 23000 to only
about 125 (the number of mass related fingerprints).

Altimetry
As explained in Sec. 3.2.1, an altimeter is sensitive to changes in the geoid height. In addi-
tion, the range measurement is also affected by changes in the volume of the ocean basin
and ocean-wide shifts due to the changing ocean mass. The altimetric observable for each
surface loading fingerprint therefore consists of the (elastic) term S̃ + U. The GIA compo-
nent has the same form.

Similar to GRACE, a linear observation equation can be constructed for the corrected
altimetry data (see Eq. 3.7):

 ∆hi
...

∆hM

 = YB


xice
xglac
xhydro
xgia

+ KC
[
xster

]
+ P

tx
ty
tz


CN−CF

+ ε. (4.32)

The columns of matrix B contain the geocentric sea level changes associated with the
unknown patterns:

B(t) =


S̃Greenland1

00 S̃Greenland2
00 · · · S̃giaN

00 (t− t0)

aδCGreenland1
10 aδCGreenland2

10 · · · aδCgiaN
10 (t− t0)

...
...

...
aδCGreenland1

nmaxnmax
aδCGreenland2

nmaxnmax
· · · aδCgiaN

nmaxnmax(t− t0)

 . (4.33)

here, the Stokes coefficients scaled by the Earth radius a represent the induced geoid changes.
To be as close to the altimeter reference system as possible, the geoid changes are provided
in the CF system, by choosing the appropriate degree 1 coefficients. The matrix Y maps the
patterns, expressed in spherical harmonics, to the locations of the altimeter measurements:

Y =

 Ȳ00(θ1, λ1) · · · Ȳnmaxnmax(θ1, λ1)
...

...
...

Ȳ00(θM, λM) · · · Ȳnmaxnmax(θM, λM)

 . (4.34)

The amount of rows of Y can reach several hundred thousand. From a storage perspective
it is therefore advised not to compute the matrix Y explicitly.

The steric EOFs, provided on a geographic grid, are stacked in the matrix C. These are
then interpolated to the altimeter points by means of the (sparse) bi-linear interpolation
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matrix K.

Finally, a set of correction parameters is introduced, which may absorb remaining differ-
ences between the origin of the altimeter measurements (a CN frame) and the CF frame.
The estimated offset is expected to be small as the origin of the reference system of the al-
timeters is expected to be close to the center of surface figure (CF). This issue is further elab-
orated upon in Sec 4.2.4. For each observation, the translation vector,

[
tx ty tz

]T
CN−CF, is

projected onto the local radial direction by matrix P

P =

 eT
1,h
...

eT
M,h

 =

 sin θ1 cos λ1 sin θ1 sin λ1 cos θ1
...

...
...

sin θM cos λM sin θM sin λM cos θM

 . (4.35)

When all the unknowns are stacked in one vector the resulting observation equation is
described by:

 ∆hi
...

∆hM

 =
[
YB KC P

]


xice
xglac
xhydro
xgia
xster

tCN−CF

+ ε = D



xice
xglac
xhydro
xgia
xster

tCN−CF

+ ε. (4.36)

For each altimeter, the normal equations can now be build by using the range error as a
diagonal error-covariance, Calt = diag

[
σ∆h2

1 · · · σ∆h2
M
]
. Similar to the GRACE processing,

the introduction of the secular time dependency is postponed until after the assembly of the
normal equations. It now also becomes clear what the advantage of the OpenADB altimeter
data is. In the so-called ’BINS’ format, the altimeter data is sampled in bins which do not
change position in time. This means that for each mission (here Jason 1, Jason 1 extended
mission, and Jason 2), a design matrix D can be precomputed (each one is approximately
700 Mb) and stored on disk. The normal equation systems are transformed according to

Nalt = DTC−1
alt D, (4.37)

balt = DTC−1
alt ∆h, (4.38)

[lT
0 Pl0]alt = ∆hTC−1

alt ∆h. (4.39)

A screening of the data has been performed, before the assembly of the normal equation
systems to reduce the effect of outliers and seasonal sea-ice at the higher latitudes. For this
means, data with excessive large sea level anomalies and range errors (magnitudes larger
than 1 m), have been excluded. In addition, a sea-ice mask, derived from the maximum
sea-ice extent (Cavalieri et al., 1996) has been applied to the data. This step removes valid
measurements in the summer months, and reduces the maximum latitude reached. At the
same time however, a potential seasonal aliasing of high latitude signal is also avoided
(data at the higher latitudes is constrained only during the summer months).
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4.2.3 Combination and Weighting of Altimetry and GRACE

Merging basins on the normal equation level
Once the normal equation systems have been build, a variety of solution scenarios can be
implemented. Apart from eliminating certain parameters, it is desirable to be able to merge
the effect of neighboring basins and consider the resulting parameter as a mean change in
the combined basin. Consider a uniform change, xmerge, in a basin which encompasses N
other basins. When expressed in Gton this uniform change will induce the following mass
changes in the sub-basins x1, x2, .. (again in Gt):

x1
x2
...

xN

 =
1

∑N
i=1 Ai


A1
A2
...

AN

 [xmerge
]
= M

[
xmerge

]
. (4.40)

Where Ai denotes the area of the sub-basin i. Consequently, the merging operation can be
written as a transformation of the normal equation system using matrix M (See App. C.5).

Combining Altimetry and GRACE
The monthly normal equation systems from altimetry and GRACE contain common (e.g.
trend and mean) parameters which can only be solved for when data from the entire inter-
val is included. A simultaneous inversion would therefore require the assembly of a rather
large normal equation system containing the common parameters and a set of time varying
scales for each month. With the current setup, this would result in a normal matrix with
close to 30000 unknowns. Nowadays, a solution of such a matrix poses no real problem on
a medium sized multi-core machine with enough memory.

However, the same problem can also be easily solved on smaller sized machines when
realizing that the monthly systems are uncorrelated which results in a very sparse and
almost block diagonal normal equation system:

N =

[
Nrr Nrc

NT
rc Ncc

]
=



N(1)
rr 0 . . . 0 N(1)

rc

0 N(2)
rr . . . 0 N(2)

rc
...

...
. . .

...
...

0 0 . . . N(i)
rr N(i)

rc

N(1)T
rc N(2)T

rc . . . N(i)T
rc ∑ Ni

cc


,

b =

[
br
bc

]
=



b(1)
r

b(2)
r
...

b(i)
r

∑ b(i)
c


. (4.41)

Here the superscripts denote the individual months. The subscript ’c’ and ’r’ denote the
common and time varying parameters respectively.
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The solution system for the common parameters, x̂c, can be constructed by reducing all
time varying parameters as described in App. C.2.(

Ncc −NT
rcN
−1
rr Nrc

)
x̂c = bc −NT

rcN
−1
rr br. (4.42)

The block diagonal structure of Nrr allows this system to be written as the sum of the
individual monthly systems, each separately reduced for its time varying coefficients:

∑
(

N(i)
cc −N(i)T

rc N(i)−1
rr N(i)

rc

)
x̂c = ∑

(
b(i)

c −N(i)T
rc N(i)−1

rr b(i)
r

)
. (4.43)

Once the common parameters are estimated, they can be fixed to these values in each
of the monthly systems (according to App. C.3 and C.4). This procedure guarantees that
the solution vector x̂r is the same as would have been obtained from solving the assembled
system from Eq. 4.41.

Although, numerically efficient, the drawback of this procedure is that the monthly error-
covariances will be too optimistic. During the fixing step, the common parameters are as-
sumed to be known, and the corresponding part of the normal matrix is ignored. To obtain
the correct error-covariance matrix for month k, a post-processing step can be performed
to obtain the full error-covariance as follows:

C(k) =

([
N(k)

rr N(k)
rc

N(k)T
rc N(k)

cc

]
+

[
0 0

0 ∑i 6∈k

(
N(i)

cc −N(i)T
rc N(i)−1

rr N(i)
rc

)])−1

. (4.44)

In this expression, the block diagonal structure seen in Eq. 4.41 has been exploited. The
first term on the right hand side is simply the normal matrix of the month k. The second
term is the combined and reduced matrix using data from all months except for month k,
whose contribution is already included in the first term.
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Figure 4.18: Estimated VCE component (square root), in the fingerprint inversion for the
contributions of GRACE, and the Jason-1 and Jason-2 missions. The discontinuity in the
Jason-1 curve at the start of 2009 indicates the migration to the extended mission.
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To compute the relative weighting of the GRACE and altimetry normal equation sys-
tems, its variance components were estimated (App. C.6). It should be remarked that the
variance components themselves were estimated without applying constraints and while
keeping the common parameters fixed to their reference values. The GIA parameters were
fixed to 1, which implies that the a priori GIA model was removed from the systems. Fig.
4.18 shows the estimated variance components. The variance component associated with
the altimeters remains relatively constant at the level of (1.2)2 times the formal variances,
where Jason-2 appears to be more accurate compared to Jason-1. The variance factor for
GRACE fluctuates more strongly but exhibits the same time behavior as when estimated
for the surface loading inversion as indicated in Fig. 4.2.
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Figure 4.19: Monthly formal errors of the fingerprint inversion (September 2008), for
several combinations of Jason-1, Jason-2, and GRACE. The solution of the ’reduced’
altimetry-only inversion contain the total effect of Greenland, Antarctica and the land
glaciers as single parameters, and the first three hydrological modes. All errors are ex-
pressed in terms of their ocean mass change and eustatic sea level contribution.

The formal errors of the time varying coefficients (diagonal of C) are plotted in Fig. 4.19,
for the month September 2008. The errors are obtained from an unconstrained inversion of
the combination, a GRACE-only solution and a altimetry-only inversion. In addition the
errors of a simplified altimetry-only inversion are shown. In the latter setup, the drainage
basins in Greenland and Antarctica are merged to represent uniform changes. Further-
more, the combined effect of all the land glaciers, and the parameterization of the GIA are
represented by single parameters.

Although, the formal errors are still expected to be too small compared to the true errors,
they are still a good relative measure of the obtainable accuracy. For example, from the
combination, it can be seen that the land glaciers can be estimated relatively well, com-
pared to the other mass parameters. Small narrow basins in Greenland (number 2005,
2006) and on the Antarctic peninsula (number 25, 26), are associated with much larger er-
rors compared to their larger counterparts.

It is also clear that the errors of the mass related parameters are almost entire deter-
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mined by the GRACE contribution. Consequently, the altimetry, shows virtually no skill in
determining these parameters. Errors for the altimetry-only inversion are so large that no
usable results can be expected from such an inversion. Even when the parameterization is
strongly simplified, the altimetry-only errors are still several hundreds of Gton. The rea-
son for this unstable behavior is that the altimeter can only indirectly sense the continental
mass changes. The associated sea level changes are much weaker compared to the direct
effect of the mass on the potential field, and generally decrease as one moves away from
the mass source.
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Figure 4.20: Formal error correlation of the estimated parameter scales, at full resolution,
for September 2008. The GIA parameters (trends) are constrained by data over the entire
time interval.

In contrast, the errors associated with the steric patterns, are very well constrained by
the altimetry data. This is also the reason why the estimation of 160 steric parameters can
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be performed without problems.

From the above, it would be tempting to conclude that in order to estimate steric sea level
change it would suffice to compute the mass component from GRACE only and remove it
in a post-processing step from the altimetry. Principally, there is nothing wrong with this
procedure. However when one compares GRACE-only solutions with the combination so-
lutions (not shown here), one sees that the addition of altimetry data do cause significant
changes of the mass related parameters as well. The leverage, which the altimetry has on
the mass parameters, can obviously not be easily spotted from the diagonal of the error-
covariance, which stays approximately constant regardless of the addition of altimetry.

The correlation matrix of C can also provide useful insight in the stability of the inver-
sion problem. Wherever correlations occur, one can expect separability issues between the
parameters. The correlations reflect (1) the similarity of the used fingerprint patterns, and
(2) an unfavorable sampling by GRACE and/or altimetry. Fig. 4.20 shows a section of the
monthly correlation matrix for September 2008.

From the correlation matrix we see that the strongest correlations (|ρ| > 0.7) occur for
drainage basins which are small and in each other vicinity. The land glaciers appear to be
well separable but some smaller correlations exist with Greenland for neighboring glacier
clusters such as Iceland, Svalbard and Queen Elizabeth Is. Furthermore, although the
glacier cluster areas were excluded from the hydrology patterns, one can still see some
correlations with the hydrological parameters.

Problems also occur for the CF offsets of the altimetry, when estimated for each month
and per satellite separately. In particular the Z component is expected to cause problems
due to its correlation with the steric parameters. This can be expected as the Z-component
is ill-constrained by the altimetry as the sampling is limited to ±66◦ latitude and outside
the maximum sea ice mask. For this reason, the altimeter offsets will be estimated as mean
parameter over the entire time interval as will be explained below.

At first sight, the correlations of the GIA parameters (estimated as trends) appear not so
large. However,these correlation are especially problematic, as they can strongly influence
the secular behavior of affected basins. For example, the Antarctic component of the GIA,
is correlated with the mass pattern of the Antarctic basins (1, 2, 3, 17, 18, 19). Furthermore,
the complementary GIA patterns is strongly correlated to the glaciers in Iceland, and cor-
relations also occur with the Greenland basins. These correlations are very problematic for
the inversion and require additional constraints to be applied to the GIA. The choice of
these constraints will be discussed in the following section.

4.2.4 Constraining the Solution

Unfortunately, a straightforward inversion of the solution produces unsatisfactory results
(large non-physical correlations between parameters, unacceptably large GIA components).
Some of these problem can be mitigated by merging the smaller and badly constrained
basins into larger ones, using the method of the previous section. However, when appro-
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priate constraints are applied one can still exploit the data’s ability to discriminate between
basins. Furthermore, constraints are necessary to keep the GIA parameters at acceptable
values.

Estimating Altimeter CN-CF Offsets
Firstly, the estimated altimeter offset vectors are considered. From the previous section,
it was already clear that these geometrical offsets are not well estimated when allowed to
vary per satellite and per month.

The altimeter origin (CN) is expected to approximate the center of surface figure, at the
level of a few mm (Melachroinos et al., 2013), since it is linked to a network of tracking
stations. Furthermore, Siegismund et al. (2011) obtained a geocenter motion from steric
corrected altimetry which agreed well with Rietbroek et al. (2009) and Swenson et al. (2008).
Underlying their analysis was the assumption that the altimeter origin (CN) coincided with
the CF. Their finding also demonstrates that this assumption can be trusted to a large extent.

−20
−10

0
10

X
[m

m
]

Altimetry origin offset from CF

−20
−10

0
10

Y
[m

m
]

−20
−10

0
10

Z
[m

m
]

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

: Jason−1 : Jason−2

Figure 4.21: Estimated monthly offset of the altimeter (Jason-1&2) frame origin relative to
the center of surface figure CF. The dashed lines indicate the estimated offsets when
the parameters are assumed to be constant over the entire time interval and when the
missions are combined.

Fig. 4.21 shows the time variation of the estimated CN-CF offsets. Clearly the monthly
variations of the offset are larger then expected, but a bias in the Z direction can still be
recognized. The cause of this shift remains unclear, it may be related to the altimetry orbit
(with radial corrections applied), or it is possibly introduced through the subtraction of the
mean sea surface (CLS01, Hernandez and Schaeffer, 2001) which is computed by averaging
over an earlier time period. Furthermore, the variation of the Jason-1 and Jason-2 offsets is
virtually the same, such that the offsets of the mission can safely be combined in a single
set of parameters. The time variations of the offset (monthly, but also a secular signal)
may potentially absorb geophysical signal from the estimated steric components. For that
reason, and the observation that the CF assumption of the altimeter origin is realistic, it was
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decided to estimate the altimeter offset as a constant vector over the entire time period. The
estimated values are indicated by the dashed line in Fig. 4.21.

Inter-basin Regularization
There are several basins, whose parameters are difficult to separate in the inversion. The
most problematic are the high-elevation Greenland basins 5 and 6, and the narrow drainage
basins 25 and 26 on the tip of the Antarctic peninsula. For these basins, Fig. 4.22, shows
their unconstrained time varying estimates in terms of Gtons. It is obvious that the uncon-
strained estimates are strongly negatively correlated. Their combined contribution is much
less than their individual counterparts.

At first thought, it might be an option to constrain the estimated parameters towards
zero. This would however also bias the combined mass change of the basins towards zero.
Such a regularization can also have disastrous effect on the combined trend. On a global
scale, it is of primary interest to get the trend right, which renders such a regularization
technique unacceptable.
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Figure 4.22: Unconstrained and constrained estimates of basins in southern Greenland (top
figure) and on the tip of the Antarctic peninsula (bottom). The inter-basin constraint
penalizes surface loading differences between basins which have a large formal error
correlation (|ρ| > 0.7). The basins can be located in Fig. 4.11 by their corresponding
numbers.

A more advanced regularization can be constructed by realizing that the basin estimates
are strongly negatively correlated. This effect can be decreased by regularization the dif-
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ference between the basins. In this way, the common time variation of the basins is still
unconstrained. In terms of equivalent water height, the difference between two basins,
∆hi, can be written as a function of the estimated parameters in Gton:

∆hi =
xi1

ρw Ai1
− xi2

ρw Ai2
=
[
0 . . . 1

ρw Ai1
− 1

ρw Ai2
. . . 0

]
xice = bixice. (4.45)

To each monthly normal matrix, Nk, a regularization matrix can now be added:

Ñk = Nk + αΦ (4.46)

Where the matrix Φ is constructed by constraining n basin differences:

Φ =

bT
1
...

bT
n

 [b1 . . . bn
]

(4.47)

In this thesis, a regularization matrix was constructed from those basin combinations in
Greenland and Antarctica were a strong correlation (|ρ| > 0.7) was found in the formal-
error correlation matrix (see Fig. 4.20). Under this criteria, 6 and 14 basin combinations
were constrained in Antarctica and Greenland respectively7.

The regularization parameter is empirically chosen as α = 20. This implies that the in-
duced basin differences, ∆h, are associated with a variance of (22cm)2. The impact of the
regularization can be seen in Fig. 4.22. The chosen regularization effectively removes most
of the sub-annual variations, while still allowing some difference in the estimated trends.
A further increase of the regularization parameter will push the estimated trend difference
towards zero, with the disadvantage that the signal is smeared out between the basins.

Constraining GIA Parameters
A particular challenge of the joint inversion is the separation of the GIA induced compo-
nents from the present day mass changes. In particular, the GIA signal in Antarctica is
spatially similar to the Antarctic basins, making it difficult to objectively split up the com-
ponents based on geodetic data. This was realized already in many GRACE mass balance
studies (e.g. Velicogna and Wahr, 2006b; Horwath and Dietrich, 2009; Wu et al., 2010)

To find a suitable set of constraints, the monthly mass and steric parameters, and the con-
stant altimeter offset from the combined normal equation system from Eq. 4.41 are reduced.
The resulting normal equation system contains only the five GIA parameters (Antarctica,
Laurentide, Fennoscandia, Greenland, and complementary sources). An unconstrained in-
version causes in particular the Greenland component and the complementary component
(e.g. Iceland and Patagonia) to become unacceptably large (see Table 4.2).

The estimated GIA parameters are unitless factors, which indicate to what extent the ref-
erence model is adjusted. Consequently, when all GIA values are estimated as zero, the

7The total amount of possible combinations amounts to (n−1)n
2 , implying 120 combinations within Greenland

and 351 combinations within Antarctica
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4.2 Estimation of Fingerprint Magnitudes

initial GIA model needs no adjusting. Likewise, when the Antarctic component is associ-
ated with a value of value of -0.2, the Antarctic component of the GIA signal is 20% smaller
compared to the background model from Klemann and Martinec (2009).

Descr. Ant. Laur. Fen. Gre. Compl.
TR(1·100) -1.08 0.11 -0.95 -3.77 24.31
TR(1·102) -1.08 0.12 -0.97 -3.47 11.13
TR(1·103) -1.08 0.12 -0.97 -2.95 1.84
TR(1·104) -1.05 0.13 -0.86 -1.43 0.18
TR(5·104) -0.90 0.12 -0.55 -0.44 0.03
TR(1·105) -0.77 0.11 -0.38 -0.24 0.02
TR(2·105) -0.59 0.10 -0.24 -0.12 0.01
TR(1·106) -0.21 0.06 -0.06 -0.03 0.00
TR(1·107) -0.03 0.01 -0.01 -0.00 0.00
TR(1·108) -0.00 0.00 -0.00 -0.00 0.00
TSVD(5) -1.08 0.11 -0.95 -3.78 24.60
TSVD(4) -1.09 0.12 -0.99 -3.29 -0.06
TSVD(3) -1.10 0.14 -1.01 -0.01 0.00
TSVD(2) -1.11 0.12 -0.01 -0.00 0.00
TSVD(1) 0.00 0.11 0.00 -0.00 0.00
Tuned -0.31 0.12 -0.14 -0.08 0.08
α (6·105) (1·100) (4·105) (3·105) (2·104)

Table 4.2: Variation of the
GIA parameters under dif-
ferent constraints, relative
to the reference model.
TR(α) denotes a Tikhonov
regularization using the
identity matrix with the
regularization parameter
in brackets. TSVD(N)
indicates a pseudo inverse
based on a truncated sin-
gular value decomposition
keeping N eigenvectors.
The tuned diagonal regu-
larization uses a different
regularization for each
GIA parameter.

Several types of constraint have been tried in this work. To obtain a first idea of the
sensitivity of the 5 parameters to the regularization strength an identity matrix is used in
a Tikhonov regularization. The regularization parameter is then allowed to vary between
1 and 1cot 108. The results are visualized in Fig. 4.23 using a so-called L-curve, which
is a log-log plot of the 2-norm of the solution vector plotted against the 2-norm of the
posteriori (weighted) residual (Hansen, 1999). In the plot shown on the left, the norm of
the estimated GIA parameters are normalized by

√
5 (inducing only a vertical shift on the

log axis), such that it represents the RMS of the solution vector. This eases interpretation,
as the magnitudes on the Y-axis can be regarded as the fractional change of the reference
GIA model. In the same figure, the absolute values of the individual estimates from Tab.
4.2 are also plotted using light gray curves.

Alternatively, in the right subplot of Fig. 4.23, the effect of the regularization has also
been plotted in terms of the spatial root mean square of the estimated uplift (i.e. the adjust-
ment to the reference model). To this means, the five estimated GIA adjustment parameters
are used to compute the weighted root mean square of the GIA adjustment pattern accord-
ing to

WRMSGIA =

√√√√nlat

∑
i=0

nlon

∑
j=0

∆U2
GIA(φi.λj) cos(φ)

nlatnlon
, (4.48)

where ∆UGIA(φi.λj) =
5

∑
k=1

UGIAk(φi.λj)xGIAk . (4.49)

The five indivual GIA uplift components, UGIAk , are multiplied by the estimated correc-
tions, xGIAk , before the latitude weighted root mean square is computed over the entire
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4 Joint Inversion Schemes

globe, discretized by a 1x1 degree grid. The same can be done for the individual GIA com-
ponents which are plotted in grey in the righthand side subplot of Fig. 4.23.
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Figure 4.23: ’L-Curves’ of the estimated GIA parameters under constraints. Three types
of regularization are tried: (1) a Tikhonov regularization with various strengths, (2) a
truncated singular value approach, (3) a diagonal regularization where the diagonals are
individually tuned. The left subplot has the least squares cost functional plotted against
the root mean square of the estimated GIA parameters, which reflect residuals relative to
the reference model and are unitless. The green line (33%) serves as a prior, indicating a
boundary below which acceptable values may be obtained. The curves of the 5 separate
GIA components underlie in grey. The same results are also shown in the right subplot,
but the latitude weighted rms of the estimated GIA uplift adjustment is now mapped on
the Y-axis.

As suggested by Hansen (1999), a well-shaped L-curve would initially drop steeply as
the regularization gains strength, effectively decreasing the solution without affecting the
residual norm to much. Then a sharp turn would occur and the curve would level off
horizontally, whereby virtually only the norm of the residual would be increasing. The
regularization associated with the corner of this L-curve would then be chosen to be the
’optimal’ regularization.

Disappointingly, from the inspection of Fig. 4.23 one has to conclude that such a L-
shaped curve is non-existent in both visualizations. In fact, the L-curve as depicted in the
right of Fig. 4.23 is even smoother as most of its behavior is determined by the Antarctic
correction, which is the largest component and varies only smoothly.

The curve closest to a ’L’ comes from the variation of the complementary GIA parameter,
but a distinct corner can not be spotted. From the curves, a regularization parameter of 103

seems to be on the point with the strongest curvature, but the estimated GIA parameters
associated with this value are simply too large (corresponding to changes in the order of
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4.2 Estimation of Fingerprint Magnitudes

10% to 300 % of the GIA reference model).

Alternatively, a truncated singular value approach was tried to constrain the solution
(see Matsu’ura and Hirata, 1982 for a discussion). In this approach only the N most stable
eigen modes of the normal matrix are used to construct a pseudo-inverse. Since 5 parame-
ters are estimated here, 5 truncation levels can be tried, which are also plotted in Fig. 4.23.
Unfortunately, none of the truncation levels yields satisfactory results (see Tab. 4.2). While
Greenland, and the complementary GIA parameter, quickly drop to zero as the truncation
level increases, the values for Antarctica and Fennoscandia still remain too large.

The observations above underline once again the problem that ’separating GIA from the
present day surface loading’ is a very difficult task. This issue was also noted by Wu et al.
(2010) who separated GIA from the present mass trends using GRACE and GPS, but their
results are still considered controversial.

In conclusion, an objective constraint based only on the data can not be constructed.
However a workable solution can still be constructed by applying more a priori (but ad-
mittingly fuzzy) knowledge. Paulson et al. (2007) considered a variety of GIA ensembles
with variations of the glacial ice loads in the order of 20% to be realistic. Although such
a number can be disputed, it gives a general guide as to where one must be looking for
the true GIA values. Firstly, I decided to reject all estimated GIA parameters which have
absolute values above the 33% level (indicated by the green line in Fig. 4.23). Secondly, one
can expect that the GIA signal of Fennoscandia is better known than that from Antarctica
as the regional measurement infrastructure is better in Scandinavia. Thirdly, the comple-
mentary and Greenland patterns are potentially disturbing the Glacier estimates so they
are not allowed to change by more than 10%. Under these constraints, a tuned diagonal
regularization matrix has been constructed (see the ’tuned’ entries in Tab. 4.2). These con-
straints are then used in the final inversion results of this study.

Arguably, once can propose to simply remove the GIA parameters from the inverse prob-
lem and use only the a priori model. However, I still feel that the data provides some ability
to separate the GIA from the present day mass changes. With the chosen regularization, I
trust the GIA model at the 33% percent level but let the data decide whether the signal is
weaker or stronger than the a priori model. In any case, the 12% increase of the Laurentide
component seems to be a robust feature.
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5 Results from the Global Inversions

5.1 Inversion for Global Surface Loading

In the following sections, the results from the inversion scheme described in Sec. 4.1 will
be discussed. The inversion results span the period from January 2003 to December 2010,
whereas the GPS-only inversion results span a somewhat longer period from January 2002
to Spring of 2012. The discussion will cover the estimated geocenter motion (CM-CE, in
this case) and the seasonal and non-seasonal spatial distribution of the signal. Further-
more, the (residual) surface deformations at the GPS station locations are compared with
the inversion results, and the oceanic mass variations are validated using time series of in
situ bottom pressure recorders (BPRs). The estimated Helmert parameters are expected to
absorb any remaining residual network defects and are shown to be small compared to the
geocenter motion. Hydrological mass variations in selected watersheds are compared for
different methods (GRACE, combination solution and GPS only).

5.1.1 Geocenter Motion

A major advantage of using the GPS station deformations in the inversion, is that it en-
ables the estimation of the degree 1 surface loading components which can be linked to
the geocenter motion. In line with Eq. 2.62, the geocenter (CM) can be computed from the
estimated degree 1 surface loading coefficients in a chosen (isomorphic) frame:

xCM − xCX =
√

3a
(1 + k

′CX
1 )ρw

ρe

 T11
T1−1
T10

 . (5.1)

Fig. 5.1 shows the center of common mass as seen from the center of solid Earth frame
(setting k

′CE
1 = 0 above). The combination solution as well as a GPS-only solution are

plotted. For comparison, monthly independent geocenter estimates from Swenson et al.
(2008) and Cheng et al. (2010) are plotted as well. Here it must be noted that the estimates
from SLR are slightly different, because they reflect the offset of the CM from the center of
network (close to the ITRF2005 origin). The background de-aliasing model (GRACE GAC
product) is not restored. As can be seen from the last column of Tab. 5.2, this introduces
additional signal in the time series which limits the comparison of the different estimates.
Generally, the series agree to a large extent, and the remaining discrepancies reflect the
current level of understanding of the geocenter motion. This level remains however above
the computed errors, which suggests that correlated and technique specific errors are more
dominant.

The dominant signal in the geocenter motion corresponds to a seasonal variation for
which the amplitudes and phases are tabulated (Tables 5.1 and 5.2). The GPS-only estimate
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5.1 Inversion for Global Surface Loading

generally contains more high frequency noise, compared to the combination solution (see
the last column of Tab 5.1). In comparison with the results from Rietbroek et al. (2012b), a
reduction of noise in the X and Z component can be seen from the residual RMS. Further-
more, the GPS-only solution displays stronger inter-annual fluctuations reflected in the X
(and Y) component of the geocenter motion. The inter-annual variation of these two com-
ponents appears to be negatively correlated (ρ = −0.45, for a half year long running mean
filter on the non-seasonal residual) and is consequently difficult to resolve by a GPS-only
solution. It also depends on the applied ocean mass constraint (not shown here).
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Figure 5.1: Time variation of the Cartesian components of the geocenter motion (xCM− xCE)
for different estimates. The time series are relative to the release 05 Ocean-Atmosphere
(GAC) product. The SLR based series represents the offset relative to the SLR network
origin.

Unfortunately, a simple eye-balling of the three Cartesian components of geocenter mo-
tion contributes little to the physical comprehension. For that reason, the geocenter motion
is plotted in ’polar form’ in Fig. 5.2. This representation, also used in Rietbroek et al.
(2012b), depicts the geographical location where the 3 dimensional CM-CE offset vector is
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Annual Semiann. RMS
A[mm] ta[doy] S[mm] ts[doy] post.[mm]

GRC+GPS+OBP (X) 1.3 (± 0.06) 137 (± 3) 0.6 (± 0.06) 95 (± 3) 0.8
(Y) 2.2 (± 0.06) 304 (± 2) 0.8 (± 0.06) 77 (± 2) 0.7
(Z) 2.5 (± 0.06) 72 (± 1) 0.6 (± 0.06) 151 (± 3) 0.7

GRC+GPS+OBP(δh only) (X) 1.0 (± 0.05) 141 (± 3) 0.6 (± 0.05) 94 (± 3) 0.7
(Y) 2.0 (± 0.05) 306 (± 2) 0.7 (± 0.05) 77 (± 2) 0.7
(Z) 2.1 (± 0.05) 67 (± 1) 0.4 (± 0.05) 143 (± 3) 0.6

GPS (constr.) (X) 1.5 (± 0.09) 125 (± 4) 0.3 (± 0.09) 101 (± 9) 1.3
(Y) 1.4 (± 0.07) 278 (± 3) 0.5 (± 0.07) 91 (± 4) 0.9
(Z) 2.2 (± 0.11) 84 (± 3) 0.6 (± 0.11) 134 (± 6) 1.5

Swenson et al. (2008) (X) 1.7 (± 0.07) 99 (± 3) 0.1 (± 0.07) 57 (± 18) 0.5
(Y) 1.2 (± 0.07) 283 (± 4) 0.5 (± 0.07) 64 (± 4) 0.4
(Z) 2.3 (± 0.10) 93 (± 3) 0.1 (± 0.10) 132 (± 22) 0.6

Rietbroek et al. (2012b) (X) 1.5 (± 0.07) 107 (± 3) 0.2 (± 0.07) 142 (± 8) 1.1
(Y) 2.2 (± 0.05) 305 (± 1) 0.3 (± 0.05) 64 (± 6) 0.7
(Z) 2.3 (± 0.09) 32 (± 2) 0.7 (± 0.09) 151 (± 4) 1.2

Cheng et al. (2010) (X) 2.8 (± 0.35) 40 (± 7) 1.0 (± 0.34) 133 (± 10) 2.2
(Y) 0.6 (± 0.39) 318 (± 36) 0.5 (± 0.39) 57 (± 25) 2.5
(Z) 4.4 (± 0.48) 50 (± 6) 1.7 (± 0.48) 92 (± 8) 2.9

GAC RL05 (X) 1.4 (± 0.08) 10 (± 3) 0.5 (± 0.08) 165 (± 5) 1.0
(Y) 1.7 (± 0.06) 355 (± 2) 0.4 (± 0.06) 143 (± 4) 0.9
(Z) 0.9 (± 0.11) 348 (± 7) 0.6 (± 0.11) 86 (± 6) 1.5

Table 5.1: (Semi-)Seasonal amplitude and phase of the geocenter motion (CM-CE). The de-
aliasing model (release 05) is not restored, but the coefficients of its seasonal harmonic
are provided for completeness in the last 3 rows of the table. The fitted model follows
f (t) = mean + trend(t− t0) + A cos(Ωannual(t− ta)) + S cos(2Ωannual(t− ts)), such that
the phase can be interpreted as the time where the maximum occurs. The data flowing
in the estimates are restricted to the period 2003-2009 (7 years). The provided errors are
the formal errors rescaled by the a posteriori σ0 (App. C.1). The entry with “δh only”,
denotes a solution where the horizontal deformation solution is excluded, and where no
Helmert rotations are estimated. The residual RMS of the time series is provided in the
last column.
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Annual Semiann. RMS
A[mm] ta[doy] S[mm] ts[doy] post.[mm]

GRC+GPS+OBP (X) 1.2 (± 0.08) 73 (± 3) 0.4 (± 0.07) 120 (± 6) 1.0
(Y) 3.5 (± 0.06) 326 (± 1) 0.6 (± 0.06) 96 (± 3) 0.8
(Z) 2.7 (± 0.12) 52 (± 3) 0.4 (± 0.12) 119 (± 8) 1.5

GRC+GPS+OBP(δh only) (X) 1.1 (± 0.07) 62 (± 4) 0.4 (± 0.07) 119 (± 6) 0.9
(Y) 3.3 (± 0.06) 329 (± 1) 0.5 (± 0.06) 100 (± 3) 0.8
(Z) 2.5 (± 0.12) 45 (± 3) 0.5 (± 0.11) 109 (± 7) 1.5

GPS (constr.) (X) 1.6 (± 0.11) 73 (± 4) 0.4 (± 0.11) 143 (± 9) 1.5
(Y) 2.4 (± 0.09) 320 (± 2) 0.5 (± 0.09) 116 (± 5) 1.2
(Z) 2.3 (± 0.15) 60 (± 4) 0.7 (± 0.15) 110 (± 6) 2.0

Swenson et al. (2008) (X) 2.2 (± 0.13) 61 (± 4) 0.3 (± 0.13) 171 (± 12) 0.8
(Y) 2.3 (± 0.09) 326 (± 2) 0.2 (± 0.09) 89 (± 14) 0.6
(Z) 2.2 (± 0.18) 70 (± 5) 0.5 (± 0.18) 95 (± 10) 1.1

Rietbroek et al. (2012b) (X) 1.9 (± 0.09) 62 (± 3) 0.7 (± 0.09) 157 (± 4) 1.4
(Y) 3.4 (± 0.07) 327 (± 1) 0.2 (± 0.07) 128 (± 9) 1.0
(Z) 3.0 (± 0.14) 19 (± 3) 0.6 (± 0.14) 128 (± 7) 1.8

Cheng et al. (2010) (X) 4.1 (± 0.36) 30 (± 5) 1.3 (± 0.36) 144 (± 8) 2.3
(Y) 2.1 (± 0.40) 345 (± 11) 0.1 (± 0.39) 111 (± 120) 2.5
(Z) 4.8 (± 0.48) 40 (± 6) 2.2 (± 0.47) 92 (± 6) 2.9

Table 5.2: As in table 5.1, but now including the ocean and atmosphere from the de-aliasing
product.
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Figure 5.2: Orientation and magnitude of the seasonal geocenter motion, for a combination
with GRC+GPS+OBP and for the (constrained) GPS-only solution. The release 05 Ocean-
Atmosphere (GAC) product has been restored. Empty circles indicate weekly geocenter
motion locations (from the combination).
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directed to. The magnitude of the offset is visualized with the size of the marker.

Figure 5.2 depicts the seasonal variation of the geocenter motion, on top of the weekly
geocenter estimates together with a seasonal estimate of the GPS-only solution. The time
series include the oceanic and atmospheric background models. As can be seen from the
figure, the geocenter offset revolves around the Earth, very roughly approximating a great
circle, while the total CM-CE offset does not decrease below 2.5 mm. The seasonal variation
from the GPS-only solution is similar, although the position of the peaks is shifted, and the
magnitude is smaller.

5.1.2 Estimated Helmert Parameters

In the combination solution, 7 weekly Helmert parameters are estimated simultaneously
with the surface loading coefficients. In the ideal case, where almost all of the deformations
are explained by the surface load, those will remain small.

Fig. 5.3 shows the estimated Helmert parameters. The shifts at the Earth’s surface,
caused by the translation and rotation parameters, roughly remain below 0.5 mm. A some-
what larger variation (≈1 mm) is induced by the scale parameter, which predominantly
exhibits a seasonal behavior.

However, compared to earlier results from Rietbroek et al. (2012b), a notable decrease in
the scale amplitude is observed. The decrease is mainly caused by the removal of the GPS
network constraints (see Sec. 3.3.1), which were also applied to the combination solutions
of Rietbroek et al. (2012b). A further decrease may be caused by the VCE weighting scheme
in combination with newer GRACE and OBP data, which is applied in this study. The use
of high frequency ocean/and atmospheric surface loading as a background model in the
GPS processing did not cause a notable change of the estimated scale parameter. This has
been tested by running the inversion with a GPS version with and without a priori surface
loading removed.

A variety of errors is expected to create apparent scale variations in the estimated GPS
network. Of these, solar radiation pressure forces acting on the satellite are thought to play
an important role. Similar to Collilieux et al. (2011a), some peaks in the power spectral
density of the scale parameter (see Fig. 5.4) appear at the harmonics of the draconitic fre-
quency of the GPS orbits (multiples of 1.04 cycles per year). In a so-called draconitic year
the orientation of the GPS constellation relative to the sun repeats itself. These frequencies
are consequently related to the solar illumination of the satellites, and may affect the solar
radiation pressure, and consequently the estimated GPS orbits. As a remark, it must be
noted that the time series is not long enough to allow for a finer frequency resolution to
be more conclusive. Lavallée et al. (2006) suggested that an imperfect GPS network may
induce aliasing of surface loading signal. However, since the surface loading signals are
estimated simultaneously and are strongly constrained by GRACE this is not expected to
explain the remaining scale variations. A similar conclusion has been reached by Collilieux
et al. (2011b).
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of the scale parameter is also plotted.
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Figure 5.4: Power spectral density of the estimated scale parameter. Other harmonics of
the draconitic GPS year (351.4 days) are indicated as vertical dashed lines. The scale
parameter of Rietbroek et al. (2012b) is noisier over most of the spectrum.

5.1.3 GPS Station Residuals

It is interesting to asses how much of the GPS station deformation can be explained by the
estimated surface load. To this means I’ve computed weekly station deformations from the
GPS normal equation systems. It is important to note that, in order to mitigate some (near)
rank defects in the GPS normal equation system, one needs to apply network constraints
(Sec. 3.3.1) to obtain sensible deformation time series. Here, the following constraints,
σtxyz = 20mm, σrxyz = 10µarcsec and σs = 0.1ppb, were applied to a core network of 132
well-distributed stations. The consequence of this procedure is that a certain stiffness is in-
troduced, which is not present in the combination solution, such that, strictly speaking, the
residual can not be considered a pure measurement residual. The surface loading from the
combination solutions have been propagated to the station locations using Eq. 4.3, and are
subsequently removed from the normal equation systems before the inversion (see App.
C.3).

Fig. 5.5 shows the reduction in RMS of the deformation components when the combi-
nation solution is removed a priori. As can be expected, the reduction is most prominent
in the up component of the deformation, which is about 3 times more sensitive to surface
loading variations as the horizontal components. This is also visible from the lower right
subplot from Fig. 5.5, where the sorted RMS of the station deformation is depicted. The
reduction in the East and North components is significantly less, and for many stations no
significant reduction is visible.

In the time domain, this typical behavior has also been plotted for a selected set of GPS
stations in Fig. 5.6. The displayed stations cover well performing stations (WILL, GRAZ),
but also some which perform marginally or even bad (KOUR, OSN1, EIL1). The height
component of the stations generally show reduced seasonal behavior when the combina-
tion solution is subtracted, except for station EIL1 which in fact shows an increase in RMS.
The horizontal components show little or no reduction, and the associated variations are
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Figure 5.5: Reduction of the local station deformation components after removing the com-
bination solution a priori from the GPS normal equations. The circles denote the de-
crease/increase in the RMS of the components. The lower right subplot indicate the
original RMS (solid lines, sorted according to magnitude), whereas the dots denote the
RMS of the corresponding residuals.

also not absorbed in the combination solution.

Naïvely, one may therefore suggest to exclude the horizontal deformations in the com-
bination solution all together. However by doing so, the long wavelength coefficients may
be affected. For example, the geocenter motion exhibits a decrease in seasonal amplitude
when excluding the horizontal information (see Tables 5.1 and 5.2). For this reason, it is
still advisable to include the horizontal information in the combination solutions.

5.1.4 Seasonal and Inter-annual Surface Loading

The estimated surface loading, without restoring the background models, mainly respre-
sent hydrological signal. However, as the background models are not perfect, oceanic and
atmospheric modelling errors are also reflected in the surface mass loads.

Fig. 5.7, shows the estimated Cosine and Sine amplitudes (peaking in the end of Dec
and March respectively) of the combination solution. Clearly, most of the signal is related
to the hydrological seasonal cycle, with the well-known maxima in the tropical regions.
However, in the Southern Ocean, we see residual seasonal signal peaking in the winter. The
removal of the seasonal fit (and trend), also reveals signals (5.7 bottom right) on other time
scales. These may be caused by accelerations (Greenland, Alaska, Antarctic peninsula),
sub-annual signals (Southern Ocean) or also episodic and inter-annual variations (High
latitude regions in Asia, Dronning Maud land, Wilkes Land).
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Figure 5.6: GPS station time series
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Figure 5.7: Seasonal amplitudes and standard deviations of the combination solution (no
background models restored). The bottom figures depict the RMS of the surface load
with and without seasonal signal.

5.1.5 Comparison with In Situ OBP

When studying oceanographic signals, the background (ocean/atmosphere) models need
to be restored. The surface load from the inversion, can be directly compared with in situ
measurements of ocean bottom pressure. The in situ data have not been used in the inver-
sion or in the FESOM model, so they can be considered as an independent validation set.

In a first approach, the correlation between the in situ OBP series and the OBP from the
combination solution has been computed. Fig. 5.8 shows the location and correlation of
the combination solution with the in situ time series. For comparison, the correlation with
the background model has also been computed (the right subplot). Compared to the GAC
product, the combination solution shows improvements in correlation in the central At-
lantic, the Southern Ocean and the Fram Strait. However there are also other areas, such
as near the Aleutian trench and the West Coast of the US, where the combination solution
now yield decreasing or even insignificant correlations. This is most likely due to the leak-
age of seasonal continental signal the coastal areas. In the well-sampled KESS array to east
of Japan (Park et al., 2008), only small changes in correlations are found (both negative and
positive). In contrast to the results from Macrander et al. (2010), the combination solution
performs relatively well in the central Atlantic and the Drake passage. This is most likely
the result of the simulated OBP which flows in the joint inversion, stabilizing the solu-
tion over the ocean. As a remark, the release 5 of the OMCT model (Dobslaw and Thomas,
2007b; Dobslaw et al., 2013), seems to perform better than the earlier release 4 model. When
comparing the new model with the in situ series, the correlation improves at about 2 thirds
of the recorders.
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Figure 5.8: Correlation of the inversion solution with in situ bottom pressure series. Circles
and triangles denote positive and negative correlations respectively. Empty squares indi-
cate insignificant correlations (based on p-values larger than 0.05, which commonly arise
because of a limited time span). Both the combination solution and the GAC product are
evaluated up to degree and order 30.

By comparing correlations only, one introduces a potential pitfall. Just because two sig-
nals correlate well, it does not necessarily mean that the magnitude of the signals are com-
parable. To put the correlations in a better perspective an approximate signal to noise ratio
is also plotted in Fig. 5.9. Here the signal to noise ratio is approximated as:

SNRcomb =
∑i TBPR(ti)

2

∑i(TBPR(ti)− Tcomb(ti))2 (5.2)

This measure allows the comparison of the power of the signal (from the local bottom
pressure TBPR) against the approximated noise level (the combination solution, Tcomb, sub-
tracted from the local series). For values of SNRcomb > 1, the combination solution explains
a significant fraction of the variation of the in situ series.
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Figure 5.9: Approximate signal to noise ratio of the local OBP signal relative to the residual
signal (combination solution on the left, and the GAC product on the right). As in Fig.
5.8, circles and triangles come from comparisons with significant positive and negative
correlations.

The in situ measurements are band-unlimited measurements at single locations, whereas
the combination results are associated with a band-limited expansion of spherical harmon-
ics. The difference in spatial resolution makes a comparison inherently difficult. A good
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5.1 Inversion for Global Surface Loading

match is therefore only expected when the in situ time series reflect ocean bottom pressure
variations occurring in a much larger area surrounding the recorder. Indeed, several local
OBP series in the Southern Ocean were shown to be significantly correlated to GRACE-
derived OBP in areas far away from the recorder itself (Rietbroek, 2007).
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Figure 5.10: Highlighted set of bottom pressure time series plotted against the joint inver-
sion solution and a monthly GRACE (GFZ RL05) solution. The longer series (Fram strait,
Drake passage, South Atlantic) are composites of multiple BPR deployments. The corre-
sponding correlations between the joint inversion and the local series is indicated in the
subplot titles.

When looking at the signal to noise ratios, one finds that the combination solutions gen-
erally show large signal to noise ratios where the correlations are also improved. However,
there are several locations, where one finds SNR values lower than 1, whereas the corre-
lation is significant and positive. At those locations, the combination solution does not
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necessarily yield an improvement. It must be noted however, that additional spatial fil-
ters may yield more optimal results. Although much less than GRACE-only solutions, the
oceanic signal of the combination is still affected by some leftover striping, which may be
decreased by applying an appropriate filter.

Fig. 5.10 depicts, for selected recorders, the local time series versus the results from
the joint inversion. In addition, the (standard) monthly GRACE solution (GFZ RL05), is
also plotted. Signals on sub-monthly scales are captured in both the joint inversion results
and the local series. This demonstrates the potential of the joint inversion to resolve sub-
monthly signals as well. In fact, the local bottom pressure signal is often associated with
large (spatial) correlation lengths, and is therefore detectable in the lower harmonics of
surface loading (Böning et al., 2008).

5.1.6 Hydrological Variations in Selected Watersheds

The low degree part of the surface load contains large scale hydrological variations, which
can studied on basin-wide scale. In the spectral domain, Eq. 4.14 can be used to compute
the spatial mean of the basin. For large watersheds, it is in many cases also possible to re-
trieve the hydrological signal using a GPS-only inversion. Since it cannot be expected that
the GRACE mission overlaps a GRACE follow-on, a gap in between the mission will most
likely occur. Using a GPS-only solution has the potential to fill such a gap. Although the
accuracy will be much less than that of GRACE.

This section covers the comparison of basin averages from (1) the joint inversion, (2) a
GRACE-only weekly solution, and (3) a GPS-only inversion. Nine basins, of varying sizes,
and covering various climatological regions, are investigated in terms of watershed varia-
tions. In the computation of the basin average, a (weak) Gaussian filter with a half-width
of 200 km is applied. This reduces some of the remaining noise in the solution, without
attenuating the solution too much.

The GPS-only solution uses constraints over the ocean as described in Sec. 4.1.3, and is
resolved up to degree and order 10. The weekly GRACE solution and the combination are
both resolved up to degree and order 30. The rescaling factors, to account for signal leakage
in and out of the basin averages, are computed according to Sec. 4.1.4. All solutions have
no background models restored such that the signal represents hydrological mass variation
only.

Fig. 5.11 shows the three solutions plotted along side, for the considered basins. It is
obvious that, although resolved up to a lower degree, the GPS only solution is more noisy
(last column of Tab. 5.3). There are two effects which intermingle here. Firstly, the errors
in the surface loading coefficients are larger, and the propagated error in terms of basin av-
erage will consequently increase. Secondly, the lower truncation of the GPS-only solution
causes a different, and in most cases larger, rescaling factor. This will additionally change
the noise level of the GPS-only series.

From Fig. 5.11 it is obvious that, on watershed scale, the GRACE solution follows that
of the combination closely. Changes can however be seen in the annual amplitudes (see

106



5.1 Inversion for Global Surface Loading

−20

0

20

E
q

h
 [

c
m

] Amazon
: comb (x1.02)
: GRC (x1.02)
: GPS (x1.20)

−20

0

20

E
q

h
 [

c
m

] Orinoco
: comb (x1.24)
: GRC (x1.24)
: GPS (x3.95)

−10
0

10

E
q

h
 [

c
m

] Parana
: comb (x1.13)
: GRC (x1.13)
: GPS (x0.90)

−10
0

10

E
q

h
 [

c
m

] Yukon
: comb (x0.63)
: GRC (x0.63)
: GPS (x0.98)

−20

0

20

E
q

h
 [

c
m

] Zambezi
: comb (x0.98)
: GRC (x0.98)
: GPS (x0.98)

−10
0

10

E
q

h
 [

c
m

] Mississippi
: comb (x1.06)
: GRC (x1.06)
: GPS (x1.15)

−10
0

10

E
q

h
 [

c
m

] Ob
: comb (x0.98)
: GRC (x0.98)
: GPS (x0.87)

−20

0

20

E
q

h
 [

c
m

] Ganges
: comb (x1.06)
: GRC (x1.06)
: GPS (x1.51)

−10
0

10

E
q

h
 [

c
m

]

2004 2006 2008 2010 2012 2014

Danube
: comb (x1.00)
: GRC (x1.00)
: GPS (x1.12)

Figure 5.11: Total water storage variations in various hydrological watersheds.
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Figure 5.12: GPS station coverage of selected hydrological watersheds.

Tab. 5.3). A large part of the remaining differences are explained by the missing geocenter
motion in the GRACE-only solution.

The coverage of the watersheds by GPS stations is shown in Fig. 5.12. Watersheds with
a dense GPS coverage, such as the Danube and the Mississippi, show a good agreement
of the GPS-only solution and the combination solution. The annual amplitude agrees to
within (±1 cm) and the phase to within a week.

In the Amazon, the largest watershed considered, the GPS-only solution agrees well in
phase but displays a weaker annual amplitude (13 cm versus 19 cm). This may be related
to the relative sparse GPS coverage, which shows no GPS receivers in the center of the
Amazon, where the signal is strongest.

The Orinoco basin, situated right next to the Amazon basin, is much smaller, and its sea-
sonal behavior largely out of phase (134 days) compared to that in the Amazon basin (Tab.
5.3). Clearly, Fig. 5.11 shows that the GPS-only solution breaks down in this region. On
the one hand, the size of the basin is too small, resulting in larger errors and signal leakage
out of the estimate. On the other hand out of phase signal from the Amazon is leaking into
the estimate. Even from the pure annual modeled WGHM signal (column 2 in Tab. 5.3),
we find that the filtered signal in the Orinoco basin suffers from the largest phase shift (42
days ahead of the unfiltered signal). The rescaling factor which needs to be applied is also
excessively large (≈4), exaggerating both leakage effects and the noise level.

Although only slightly larger, the Ganges basin, shows a much better agreement between
the GPS-only solution and the joint inversion. Although the coverage by GPS stations is
rather sparse, the strong monsoonal signal obviously result in better skill for the GPS-only
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solution. In Bangladesh, monsoonal flooding has already been succesfully detected using
a GPS array (Steckler et al., 2010).

Some of the scaling factors, in Tab. 5.3 and Fig. 5.11 are smaller than 1. Although in-
tuitively, one expects an attenuation of the signal, and hence a factor larger than 1, it is
apparent that sometimes the signal leaking into the estimate is larger than the signal which
is leaking out.

The discussion above demonstrates that there is definitely potential for the use of GPS-
only inversions to cover a future GRACE mission gap. On the other hand the interpretation
of hydrological signal from such inversions is highly heterogenous, depending on the GPS
coverage and the leakage associated with the surrounding signal.
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WGHM Annual Semiann. RMS
fϑ (δta) A[cm] ta [doy] S[cm] ts [doy] post.[cm]

Amazon GPS 1.20 (2) 12.9 (± 0.4) 121 (± 2) 1.5 (± 0.4) 9 (± 7) 5.7
GPS+GRC+OBP 1.02 (0) 22.3 (± 0.2) 119 (± 1) 1.3 (± 0.2) 152 (± 5) 3.5

GRC 1.02 (0) 20.6 (± 0.2) 117 (± 1) 1.1 (± 0.2) 157 (± 6) 3.3
Congo GPS 1.27 (-5) 4.7 (± 0.4) 100 (± 5) 0.3 (± 0.4) 115 (± 46) 5.8

GPS+GRC+OBP 1.01 (3) 5.9 (± 0.2) 63 (± 2) 1.3 (± 0.2) 128 (± 5) 3.2
GRC 1.01 (3) 5.7 (± 0.2) 54 (± 2) 1.6 (± 0.2) 141 (± 4) 2.9

Danube GPS 1.12 (-1) 8.4 (± 0.2) 59 (± 1) 0.7 (± 0.2) 107 (± 8) 2.9
GPS+GRC+OBP 1.00 (0) 8.2 (± 0.3) 66 (± 2) 0.4 (± 0.3) 147 (± 22) 4.3

GRC 1.00 (0) 7.2 (± 0.3) 75 (± 2) 1.0 (± 0.3) 28 (± 8) 4.1
Ganges GPS 1.51 (-9) 14.9 (± 0.4) 255 (± 2) 2.4 (± 0.4) 62 (± 5) 5.6

GPS+GRC+OBP 1.06 (-3) 22.0 (± 0.3) 280 (± 1) 9.1 (± 0.3) 65 (± 1) 3.9
GRC 1.06 (-3) 21.2 (± 0.3) 275 (± 1) 8.0 (± 0.3) 64 (± 1) 4.3

Mekong GPS 1.70 (0) 8.9 (± 0.3) 255 (± 2) 1.6 (± 0.3) 52 (± 5) 3.6
GPS+GRC+OBP 1.14 (3) 28.0 (± 0.4) 276 (± 1) 3.0 (± 0.4) 89 (± 4) 5.4

GRC 1.14 (3) 27.0 (± 0.4) 274 (± 1) 3.9 (± 0.4) 92 (± 3) 5.6
Mississippi GPS 1.15 (-7) 6.3 (± 0.3) 89 (± 2) 1.3 (± 0.3) 5 (± 6) 3.6
GPS+GRC+OBP 1.06 (0) 6.9 (± 0.2) 94 (± 1) 1.1 (± 0.2) 169 (± 5) 2.4

GRC 1.06 (0) 4.9 (± 0.2) 94 (± 2) 0.8 (± 0.2) 164 (± 6) 2.2
Ob GPS 0.87 (3) 6.4 (± 0.2) 92 (± 2) 1.8 (± 0.2) 145 (± 4) 3.2

GPS+GRC+OBP 0.98 (-1) 4.8 (± 0.1) 86 (± 1) 1.1 (± 0.1) 151 (± 2) 1.4
GRC 0.98 (-1) 4.5 (± 0.1) 90 (± 1) 1.1 (± 0.1) 156 (± 2) 1.3

Orinoco GPS 3.95 (-42) 17.0 (± 0.9) 145 (± 3) 3.3 (± 0.9) 180 (± 8) 12.9
GPS+GRC+OBP 1.24 (-2) 70.2 (± 1.2) 253 (± 1) 14.1 (± 1.2) 182 (± 2) 17.0

GRC 1.24 (-2) 77.3 (± 1.3) 255 (± 1) 13.2 (± 1.3) 7 (± 3) 18.0
Parana GPS 0.90 (-9) 7.0 (± 0.2) 103 (± 2) 0.9 (± 0.2) 19 (± 6) 2.9

GPS+GRC+OBP 1.13 (-2) 5.3 (± 0.2) 103 (± 2) 0.1 (± 0.2) 49 (± 35) 2.5
GRC 1.13 (-2) 4.4 (± 0.2) 87 (± 3) 0.2 (± 0.2) 43 (± 27) 2.7

Yangtze GPS 0.87 (9) 6.6 (± 0.2) 255 (± 2) 1.6 (± 0.2) 47 (± 4) 3.3
GPS+GRC+OBP 1.10 (2) 3.5 (± 0.1) 231 (± 2) 0.6 (± 0.1) 53 (± 6) 1.7

GRC 1.10 (2) 4.1 (± 0.1) 222 (± 1) 0.4 (± 0.1) 53 (± 8) 1.5
Yukon GPS 0.98 (3) 2.4 (± 0.1) 90 (± 3) 1.1 (± 0.1) 146 (± 3) 1.7

GPS+GRC+OBP 0.63 (4) 9.0 (± 0.1) 82 (± 1) 1.7 (± 0.1) 153 (± 2) 2.0
GRC 0.63 (4) 8.0 (± 0.1) 83 (± 1) 1.0 (± 0.1) 146 (± 4) 2.0

Zambezi GPS 0.98 (-2) 5.8 (± 0.2) 69 (± 2) 0.9 (± 0.2) 62 (± 8) 3.6
GPS+GRC+OBP 0.98 (0) 15.4 (± 0.2) 97 (± 1) 4.4 (± 0.2) 64 (± 2) 3.4

GRC 0.98 (0) 14.7 (± 0.2) 96 (± 1) 3.6 (± 0.2) 64 (± 2) 3.2

Table 5.3: Seasonal amplitudes (in cm) and phases (in day of year) for selected watersheds
in the time period (2003-2011). The amplitudes and phases are defined as in table 5.1. The
applied scale factor, and the expected phase shift (not applied) of the filtered estimate is
tabulated in the second column.
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5.2 Inversion for Fingerprint Magnitudes

From the combination of GRACE and altimetry data, the inversion scheme described in Sec.
4.2 yields primarily time series which are associated with the predefined patterns (’finger-
prints’). The estimated factors, associated with the ice-sheet drainage basins and glaciers
can straightforwardly be interpreted as mass changes in Gton. In the spatial domain, differ-
ent linear functionals may be constructed by scaling the appropriate fingerprints by their
estimated factors and summing the results. This section will discuss a variety of extracted
functionals, such as mean sea level changes, estimated GIA uplift, steric sea level changes,
geocenter motion, and time variation of the ice sheets and glaciers. The results shown here
are by no means exhaustive, as many (combinations of) observables can be extracted, but
do provide an insight in the quality and possibilities of the inversion.

Unless explicitly stated otherwise, the results shown here were estimated using con-
straints on the inter-basin variations and the 5 (secular) GIA parameters as discussed in
Sec. 4.2.4. Three Cartesian network biases were estimated for the altimeters, using data
from the entire interval. In accordance with Tab. 4.1, the ice sheets and glaciers were pa-
rameterized using a total of 59 monthly parameters. In addition, 60 parameters describing
the hydrological storage change and 160 steric parameters (100 from Ishii and Kimoto, 2009
and 60 bootstrapped patterns from altimetry residuals) were estimated each month.

5.2.1 Global Mean Sea Level Change

The fingerprint inversion allows a partitioning of the sea level into different contributions.
A closure of the sea level budget is enforced in a least squares sense through the inversion
scheme. Furthermore, the inversion is not restricted to secular effects but inter-annual vari-
ations are detected as well. The latter property is important to assess the significance of the
trends and to quantify superimposed (natural) oceanic oscillations, such as the El Niño -
La Niña cycle, the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO).

Fig. 5.13 depicts the estimated relative sea level change grouped in contributions from
Greenland, Antarctica, land glaciers, hydrology and the steric components. As stated by
Eq. 4.25, the contribution of the present day GIA to relative sea level is zero. Worth noting
is that the annual cycle of the steric component is out of phase with the hydrological com-
ponent (see also Tab. 5.4). In addition, from the posteriori RMSs from table 5.4, it becomes
clear that, in the total sea level, some of the inter-annual noise in the steric sea level is can-
celed out by the hydrological component.

The interplay between the hydrological and steric component introduces the strongest
inter-annual variations in the total sea level. Consequently, the trend estimates are ex-
pected to strongly depend on the chosen time interval. For the hydrologic component, a
trend of -0.2 mm/yr is estimated, this value is consistent with Jensen et al. (2013) (-0.2 mm/yr)
and Llovel et al. (2010)-0.22 mm/yr and to a lesser extent with Riva et al. (2010)-0.1 mm/yr.
However, from the inspection of Fig. 5.13 it is not surprising that other trend estimates have
been reported. For example, Ramillien et al., 2008 reported a positive trend of 0.19 mm/yr)
over the period from 2003-2006.
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The estimated steric variation of the sea level is split up in a component which is linked
to the first 100 EOFs of the upper 700m of the ocean and a component which is linked to the
60 bootstrapped patterns (see Sec. 4.2.1). Remarkable is that the ’bootstrapped’ component
exhibits a much larger trend of 1 mm/yr compared to the upper ’700m’ patterns (0.17 mm/yr).
In fact, from inspecting Table 5.4, one sees that the trend from the interpolated ARGO data
from Ishii and Kimoto (2009) can not explain the total steric sea level changes (1.2 mm/yr).
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Figure 5.13: Estimated contributions to global relative sea level rise. The contributions are
separated in the contributions from Greenland, Antarctica, land, glaciers, hydrology, and
steric effects. The curves in the bottom figure have their annual harmonic fits removed
and are filtered with a half year long boxcar filter.

The results suggests that deeper part of the ocean may be responsible for a large warming
component, which has also been suggested by Balmaseda et al. (2013). When considering
the Earth’s radiation budget, a deep ocean warming has also been expected as the observed
upper ocean layer cannot account for the excess heat by itself (Trenberth and Fasullo, 2010).

The trends associated with the glaciers and ice sheets are more significant as they display
less inter-annual behavior. Greenland, shows the largest trend (0.66±0.01 mm/yr) while its
residual variations are twice as small compared to the variations from Antarctica and the
land glaciers. Combined, they account with 1.3 mm/yr for slightly more than half of the es-
timated global sea level rise (2.5±0.11 mm/yr).
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Annual Trend RMS
A[mm] ta[doy] mm/yr post.[mm]

Antarctica RSL 0.3 (± 0.09) 78 (± 17) 0.40 (± 0.03) 0.6
Antarctica GSL 0.3 (± 0.09) 78 (± 17) 0.38 (± 0.03) 0.6
Greenland RSL 0.5 (± 0.04) 282 (± 5) 0.66 (± 0.01) 0.3
Greenland GSL 0.5 (± 0.04) 282 (± 5) 0.64 (± 0.01) 0.3
Hydrology RSL 11.1 (± 0.28) 270 (± 1) -0.20 (± 0.09) 2.2
Hydrology GSL 10.5 (± 0.26) 270 (± 2) -0.19 (± 0.08) 2.1

Glaciers RSL 1.2 (± 0.07) 276 (± 4) 0.43 (± 0.02) 0.6
Glaciers GSL 1.2 (± 0.07) 276 (± 4) 0.42 (± 0.02) 0.6

Steric(700m) RSL/GSL 4.2 (± 0.29) 88 (± 4) 0.17 (± 0.08) 2.0
Steric(deep) RSL/GSL 4.3 (± 0.35) 51 (± 5) 1.03 (± 0.10) 2.7

Steric RSL/GSL 8.1 (± 0.48) 69 (± 4) 1.20 (± 0.14) 3.5
GIA GSL - - -0.13 (± 0.04) -
Total RSL 5.3 (± 0.37) 299 (± 4) 2.50 (± 0.11) 2.5
Total GSL 4.7 (± 0.37) 303 (± 5) 2.34 (± 0.11) 2.5

Total @ J1+J2 (GSL) 4.2 (± 0.43) 300 (± 6) 2.16 (± 0.12) 2.9
J1+J2 (GSL) 4.2 (± 0.43) 302 (± 6) 2.11 (± 0.12) 2.9

Auxiliary
MMA Colorado (GSL) 5.1 (± 0.32) 288 (± 4) 2.02 (± 0.09) 3.9

Steric(Ishii)GSL/RSL 3.9 (± 0.17) 88 (± 3) 0.28 (± 0.05) 1.2

Table 5.4: Trend, annual amplitude and phase of mean sea level changes, separated in dif-
ferent contributions over the time interval 2003-2011. RSL and GSL denote relative sea
level and geocentric sea level respectively. The provided errors (within brackets) are the
formal errors rescaled by the posteriori σ0. An exception is the error of the GIA which
is explicitly set to 33% of the trend value. The auxiliary multi mission altimetry (MMA)
time series from Nerem et al. (2010) is readjusted with their GIA correction (-0.3mm/yr)
to represent geocentric sea level, and is evaluated over the same time interval (2003-2011)
as the inversion results. The entry with ’J1+J2’, denotes the mean sea level as computed
from along track Jason-1 and Jason-2 (thus excluding higher latitudes). Evaluated on the
same altimetry tracks, the mean sea level change from the inversion is denoted by ’Total
@ J1+J2’. The last column contains the root mean square of the residuals after the trend
and annual fit have been removed from the time series.
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From table 5.4 it becomes clear that the difference between the total geocentric sea level
and relative sea level is in the order of -0.16 mm/yr. This is largely explained by the con-
tribution of GIA (-0.13±0.04 mm/yr). Nerem et al. (2010) applied a larger GIA correction
of -0.3 mm/yr to obtain relative sea level rise from multi-mission altimetry. Upon read-
justing their series with their GIA correction, the trend in the their geocentric sea level
is lower (2.02 mm/yr) compared to the estimated geocentric sea level trend from this study
(2.34 mm/yr, see Tab. 5.4). This discrepancy can actually be explained by the contribution
of the steric patterns in the Arctic. When the inversion results are propagated to the along
track altimetry points, before estimating a uniform sea level rise, a smaller sea level rise is
obtained as well (2.16±0.12 mm/yr). The latter value agrees to within the error bars with the
estimate from Nerem et al. (2010) and with a GSL estimate using altimetry from this study
(2.11±0.12 mm/yr).

5.2.2 Variations of the Ice Sheets

The mass variations of the major ice sheets are by no means uniform changes. The ice-
sheets are constantly in motion, the marine terminating glacier are melting and drain in the
ocean, while the mass is replenished through snow precipitation on the higher end of the
glacier. A mass imbalance of the ice sheets will occur when either one of these processes
outweigh the other. Mass losses occur at small spatial scales at the glacier outlets, and
are associated with a combination of melting and an acceleration of the glaciers. Precipita-
tion generally occurs at wider spatial scales, but may be strongly influenced by topography.

Within the inversion, the ice sheets are decomposed in several drainage basins, such that
the estimated mass changes can be used to study the dynamics of the ice sheets.

Greenland
The ice dome in Greenland inclines relatively steeply in the vicinity of the coast before lev-
eling off to about 2-3 km thickness. In the center of Greenland, the bedrock below the ice
sheet is actually below the current sea level. The mass losses are therefore expected to occur
in a narrow band in the vicinity of the coasts.

The discussion in Sec. 5.2.1 showed that the Greenland ice sheet contributes about
0.66 mm/yr to relative sea level rise. This implies that the total ice sheet is in imbalance
by about -253 Gt/yr. Table 5.5 shows the partitioning of this value in its different contribu-
tions in terms of trends and annual amplitude and phase. The time series of the individual
basins are plotted in Fig. 5.14. In the same figure, the trend is plotted in the spatial do-
main. To compare the trends, estimates from Wouters et al. (2008) and an ICEsat derived
mass trend (Sørensen et al., 2011) are also tabulated. It must be noted that these trends are
derived from shorter time intervals, as used in this thesis.

From the time variations of figure 5.14 one sees that, despite the applied inter-basin reg-
ularization, some curves are negatively correlated (e.g. within basin 1 and basin 3). It is
therefore possible that the obtained trends will be exaggerated somewhat, but will partly
compensate each other when combined. A simple ’solution’ to this problem would be to
crank up the strength of the regularization strength. However, this would at the same time
also hide interesting features which are visible at the current regularization strength. For
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this reason, I choose to set the strength of the regularization relatively low while acknowl-
edging that inter-basin (error) correlations exist in the estimates.

Annual Trend W08 ICEsat RMS
A [Gt] ta [doy] [Gt/yr] [Gt/yr] [Gt/yr] post.[Gt]

Green1 <2000m 57.1 (± 7.69) 118 (± 8) -40.4 (± 2.2) -12.0 -14.7 54.2
Green1 >2000m 37.9 (± 6.20) 321 (± 9) 15.8 (± 1.8) -1.0 0.4 43.2
Green2 <2000m 14.8 (± 3.39) 115 (± 14) -16.8 (± 1.0) -6.0 -5.2 23.9
Green2 >2000m 11.5 (± 3.50) 47 (± 18) 18.3 (± 1.0) 19.0 3.0 24.7
Green3 <2000m 37.4 (± 5.78) 165 (± 9) -16.8 (± 1.6) -25.0 -12.2 40.4
Green3 >2000m 27.5 (± 5.11) 19 (± 11) -1.1 (± 1.4) -10.0 2.6 35.9
Green4 <2000m 5.7 (± 4.01) 61 (± 41) -37.4 (± 1.2) -49.0 -43.0 28.7
Green4 >2000m 16.8 (± 2.06) 111 (± 7) -6.8 (± 0.6) -7.0 -0.3 14.8
Green5 <2000m 60.1 (± 3.08) 115 (± 3) -47.1 (± 0.9) -51.0 -55.8 22.7
Green5 >2000m 2.1 (± 1.31) 5 (± 36) -11.9 (± 0.4) 6.0 -4.2 9.1
Green6 <2000m 33.7 (± 6.41) 107 (± 11) -26.2 (± 1.8) -13.0 -24.9 45.6
Green6 >2000m 13.6 (± 3.25) 321 (± 14) 9.0 (± 0.9) 11.0 0.2 22.8
Green7 <2000m 18.1 (± 4.58) 131 (± 15) -48.7 (± 1.3) -14.0 -34.3 32.7
Green7 >2000m 14.0 (± 3.84) 364 (± 15) 18.1 (± 1.1) 2.0 -0.2 26.8
Green8 <2000m 29.0 (± 6.33) 93 (± 13) -52.5 (± 1.8) -16.0 -45.6 47.4
Green8 >2000m 11.8 (± 5.73) 244 (± 29) -8.3 (± 1.7) -13.0 -1.1 41.3
Total >2000m 76.9 (± 11.38) 356 (± 8) 33.4 (± 3.2) 7.0 0.4 78.6
Total <2000m 237.1 (± 21.74) 119 (± 5) -286.0 (± 6.2) -186.0 -235.6 154.4
Total 200.6 (± 15.03) 101 (± 4) -252.5 (± 4.3) -179.0 -235.2 109.0

Table 5.5: Annual mass changes and trends in Gtons for the resolved basins in Greenland.
The trends are furthermore compared to (GRACE) trends from Wouters et al. (2008)(col-
umn, W08, using data from Feb 2003 - Jan 2008) and ICEsat derived trends from Sørensen
et al. (2011)/Sasgen et al. (2012b), using data from 2003 until 2009.

Generally, we see that at higher elevations (above 2000m) a mass increase, while at the
lower elevations a mass decrease is visible. Most obvious are the strong mass losses in the
South East of Greenland and in basin 7 where the Jakobshaven glacier is located. At the
higher elevations, we see the largest mass increases in the basins 1, 2 and 7. In particular
the increase in the high elevation part of basin 1 seems to be a more recent phenomena
starting from 2008. The positive mass trend (18.3 Gt/yr) of the upper 2000m of basin 2 seems
to be a steady phenomena and is also in good agreement with the estimate obtained from
ICEsat(19.0 Gt/yr).

Apart from the trends, it is clear from Fig. 5.14 that several interesting non-secular sig-
nals are visible. The low elevation part of basin number 5 in the South East exhibits for
example a strong seasonal signal. This is not unexpected, since one expects strong seasonal
fluctuations in that region associated with the transport of moist air from the Gulf stream.
Table 5.5 also indicates a strong seasonal signal in the lower section of basin 1, however
since the upper section of the basin shows an almost opposite phase, this can be probably
be attributed to a correlated error.

The mass loss in many of the basins are accelerating, and some losses appear to be started
only recently. When the trends are compared to those of Wouters et al. (2008), which are
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derived from a shorter time interval (2003 until the start of 2008), one sees that for example
basin 6, 7 and 8 exhibit a significantly larger trend. The acceleration is also confirmed by
comparing the trends with those as derived from ICEsat, which uses a somewhat larger
time interval (2003-2009). The total ice mass loss in Greenland is estimated to be -252 Gt/yr

over the considered time interval (Jan 2003 until Dec 2011).
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Figure 5.14: Estimated basin changes in Greenland in Gt. The background image depicts
the computed trend in terms of equivalent water height. The trend is obtained by sum-
ming all basin contributions in terms of geoid height. Subsequently, a mean, trend and
annual harmonic is fitted through each spherical harmonic coefficient. The obtained
trend is then converted from geoid height to surface load and evaluated in the spatial
domain.

Antarctica and GIA
As stated earlier in Sec. 4.2.4, the challenge in Antarctica is to separate the GIA signal from
the present day mass changes in the drainage basins. It is therefore useful to discuss these
topics together.

Similar to the discussion of the Greenland mass changes, a table (5.6) is provided where
the annual fits and trends of the basins are assembled. To obtain an impression of the time
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variations, the estimated basin curves have been plotted over time in Fig. 5.15. The esti-
mated trend is plotted in the spatial domain in the same figure.

From Fig. 5.15, it is obvious that the most prominent changes occur in the Amundsen sea
sector (basins 20-23). These basins exhibit mass losses from 30 to over 60 Gt/yr. It should be
stressed that these changes are mainly related to the accelerating glacier velocities and melt-
ing in this region, and are virtually unaffected by the GIA signal, which only contributes an
apparent 1-2 Gt/yr per basin. Furthermore, although a significant annual signal is present,
the long term signal is dominated by trends and more recent accelerations. Compared to
the results of Sasgen et al. (2012a) the estimated trends from this study are consistently
larger by about 10-30 Gt/yr. although the time period is similar. In the current study, the
GRACE signal up to degree and order 150 is used, and only a weak inter-basin constraint
is applied. This possibly allows more signal to propagate in the estimates, compared to
using filtered GRACE RL04 data.
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Figure 5.15: As in Fig. 5.14, but now for the Antarctic ice sheet. The blue contours indicate
the estimated GIA uplift (see also Fig. 5.16).

The estimated GIA signal, in terms of present day uplift, is displayed in Fig. 5.16. The
plot has been constructed by simply adjusting the spherical harmonic coefficients of the
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Annual Trend S12 GIA RMS
A (Gt) ta (doy) Gt/yr Gt/yr Gt/yr post.

02_EAIS 13.1 (± 1.79) 286 (± 8) -11.5 (± 0.5) -6 9.0 12.9
03_EAIS 14.8 (± 2.92) 261 (± 12) 1.8 (± 0.9) 4 8.0 21.1
04_EAIS 23.3 (± 3.08) 203 (± 7) 13.2 (± 0.9) 12 1.0 21.5
05_EAIS 20.2 (± 3.69) 11 (± 10) 8.0 (± 1.0) 5 0.0 27.2
06_EAIS 16.8 (± 2.59) 235 (± 9) 4.7 (± 0.8) 5 2.0 18.8
07_EAIS 6.4 (± 5.04) 336 (± 45) 21.7 (± 1.4) 13 2.0 35.0
08_EAIS 5.5 (± 3.48) 360 (± 35) 12.9 (± 1.0) 15 1.0 25.2
09_EAIS 5.9 (± 2.82) 180 (± 27) -7.0 (± 0.8) -1 1.0 19.9
10_EAIS 4.0 (± 1.88) 292 (± 28) -2.7 (± 0.6) -1 5.0 13.9
11_EAIS 2.0 (± 2.48) 250 (± 73) -0.1 (± 0.7) 9 1.0 17.7
12_EAIS 19.5 (± 3.62) 275 (± 11) 4.1 (± 1.1) -8 4.0 26.1
13_EAIS 14.4 (± 4.21) 251 (± 17) -9.7 (± 1.2) -8 5.0 30.4
14_EAIS 11.0 (± 4.72) 215 (± 25) -14.3 (± 1.4) -8 2.0 31.8
15_EAIS 5.7 (± 2.48) 96 (± 26) -6.5 (± 0.7) -2 0.0 17.8
16_EAIS 6.0 (± 1.83) 355 (± 17) 3.7 (± 0.5) -5 1.0 12.4
17_EAIS 19.1 (± 3.84) 253 (± 12) -18.8 (± 1.1) -4 13.0 27.6
01_WAIS 6.1 (± 4.13) 68 (± 40) 33.2 (± 1.2) 9 6.0 29.8
18_WAIS 7.9 (± 2.17) 272 (± 17) -5.0 (± 0.6) 8 6.0 15.6
19_WAIS 10.5 (± 2.64) 235 (± 15) 31.7 (± 0.8) 8 6.0 18.9
20_WAIS 5.6 (± 7.37) 185 (± 74) -56.1 (± 2.1) -38 1.0 49.7
21_WAIS 8.3 (± 4.03) 311 (± 28) -62.4 (± 1.2) -51 2.0 29.5
22_WAIS 9.8 (± 5.18) 253 (± 32) -31.1 (± 1.5) -25 2.0 36.4
23_WAIS 5.0 (± 4.51) 175 (± 50) -41.4 (± 1.3) -12 0.0 31.4
24_PENIN 10.8 (± 3.77) 263 (± 21) 13.9 (± 1.1) 4 1.0 26.6
25_PENIN 5.3 (± 3.21) 72 (± 36) -12.4 (± 0.9) -25 0.0 22.8
26_PENIN 14.0 (± 3.13) 27 (± 13) -12.0 (± 0.9) - 0.0 21.9
27_PENIN 9.3 (± 3.94) 102 (± 25) -4.5 (± 1.1) - 1.0 27.4
PENIN 14.4 (± 7.55) 43 (± 30) -15.1 (± 2.1) -21 2.0 53.4
WAIS 29.1 (± 16.86) 247 (± 34) -131.2 (± 4.9) -102 22.0 119.4
EAIS 107.6 (± 20.28) 262 (± 11) -0.5 (± 6.0) 19 57.0 146.9
Total 123.0 (± 33.64) 263 (± 16) -147.0 (± 9.9) -103 81.0 237.9

Table 5.6: Annual mass changes and trends in Gtons for the drainage basins in Antarctica.
The column denoted with S12 denote the values as published by Sasgen et al. (2012a),
who used the same basin delineation. The apparent mass change as would have been
induced by the estimated GIA model is tabulated in the column marked with ’GIA’.
These values are computed by means of basin averaging the estimated GIA signal.
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reference GIA uplift using the estimated GIA parameters. In the spectral domain, such
a rescaling is justified since the relationship between the GIA-induced Stokes coefficients
and the associated uplift coefficients is approximately linear (Wahr et al., 2000,Purcell et al.,
2011).

Estimated GIA Uplift (U)Estimated GIA Uplift (U) Estimated GIA Uplift (U)Estimated GIA Uplift (U)

−10

−8

−6

−4

−2

0

2

4

6

8

10
mm/yr

Estimated update ∆UEstimated update ∆U Estimated update ∆UEstimated update ∆U

−4

−3

−2

−1

0

1

2

3

4
mm/yr

Figure 5.16: Estimated GIA uplift in the northern and southern hemisphere. The bottom
two figures, indicate the change relative to the a priori model (ICE-5G, with VM2 earth
model).

Compared to the reference GIA model in Antarctica, the estimated model shows 31%
smaller amplitudes. Smaller GIA signals were also found by Whitehouse et al. (2012) and
Sasgen et al. (2012a). In particular, Sasgen et al. (2012a) suggested that the GIA signal is
much smaller than previously assumed. Integrated over Antarctica they found an appar-
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ent mass change of 48 Gt/yr which is roughly twice as small as the value estimated here
81 Gt/yr. Accordingly, this difference is also reflected in the total present day mass change.
Interesting is that, when the GIA constraints , applied in this study, would be loosened such
values would also be obtained. It is therefore likely that the GIA constraint over Antarctica
might still be too strong, but a more detailed study is not within the scope of this work.

One thing that would speak against this, is that the basins 1 and 19, which are now asso-
ciated with a strong positive trend (roughly 30 Gt/yr), would be even stronger when the GIA
component was decreased. Alternatively, it could be that a different GIA pattern, whose
maximum values are shifted towards the centers of basin 1 and 19, would fit the data better.

The basins which are most affected by the GIA signal lie on the boundary between West
and East Antarctica (basins 1, 2, 3, 17, 18, 19). Although the GIA signal in basins 2, 3 and 17
are not strong in value, they may still falsely contribute to the mass imbalance of Antarctica,
since the basins are so large. It should be remarked that the ice loading history of ICE5-G
results in significantly more signal in east Antarctica compared to the ice loading histories
from Ivins and James (2005), Whitehouse et al. (2012), Shepherd et al. (2012).

Compared to the trends, inter-annual variations play a more important role in East Antarc-
tica and on the Antarctic peninsula. These are likely associated with atmospheric events.
For example the recent changes in Dronning Maud land (basins 4-7) have been associated
with large scale snow fall events (Böning et al., 2012).

5.2.3 Variations of Land Glaciers and Terrestrial Hydrology

Besides the mass changes of the major ice sheets, estimates of the land glaciers and hydrol-
ogy can be extracted. In terms of global mean sea level, this has been discussed in Sec.
5.2.1, but the inversion also allows a finer resolution.

Variations in the Glacier Clusters
Similar to the discussion on the ice sheets, Figs. 5.17 and 5.18, display the time variation
of the glaciers clusters in terms of mass change overlying the induced trend in the spatial
domain. The fitted annual amplitudes, phases, and trends are tabulated in Tab. 5.7.

From the table and figures it is clear that the glaciers are considerably affected by (in-
ter)annual signals. The annual amplitude, associated with the total glacier contributions,
is more than twice as large as that of Greenland and more than three times as large as the
antarctic contribution. Strong annual amplitudes are present in Alaska and Kamchatka.

Overall, no doubt exists that the glaciers are losing ice (-149±9 ]/Gtyr). The strongest mass
losses occur in Patagonia (-41 Gt/yr) and Alaska (-44 Gt/yr). A relative strong trend (-29 Gt/yr)
is also seen on the Queen Elizabeth islands (main contributor Ellesmere Island). The north-
ern most Artic Islands and Iceland all show a consistent mass loss. Although more affected
by inter-annual variations, the Alps in central Europe are losing mass with -4.6 Gt/yr.

The largest and most significant positive trend is only 5.5±1.2 Gt/yr, and is found in the
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Figure 5.17: As in Fig. 5.14 but now for the glacier clusters in the northern hemisphere.
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Brooks range in Northern Alaska. Compared to the other Alaska glaciers a much weaker
annual signal is found.

An interesting contrast can be found between the Himalayas and the Tien Shan moun-
tain ranges. From the time variation in Fig. 5.17, one sees that the curves are diverging in
more recent times. This is also reflected in the trends which have opposite sign (Himalayas:
-16.6±2.4 Gt/yr, Tien Shan: (4.3±1.6 Gt/yr). After removing the fits, a large amount of signal
remains in the signal (RMS of 42-59 Gt), making it difficult to assess the robustness of the
trends in Tien Shan mountains.
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Figure 5.18: As in Fig. 5.17 but now for the glacier clusters in the southern hemisphere.

In relation to the errors, all estimated trends are significant. However, considering the
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5.2 Inversion for Fingerprint Magnitudes

residual variations, one can suspect that some of the smaller trends may change beyond
their error bars, when different time intervals are used. For example, the clusters in the
Alps, Norway, Caucasus, New Zealand, Kerguelen&Heard is., and Kamchatka, are all
heavily affected by strong inter-annual variations.

Annual Trend RMS
A (Gt) ta (doy) Gt/yr post.

Alaska 216.4 (± 8.39) 91 (± 2) -44.1 (± 2.5) 61.3
Alps 25.9 (± 2.98) 153 (± 7) -4.6 (± 0.9) 21.8
Brooksrange_Alaska 46.0 (± 4.18) 288 (± 5) 5.5 (± 1.2) 31.7
Caucasus 33.5 (± 4.52) 138 (± 8) 3.1 (± 1.3) 32.3
Himalaya 61.9 (± 8.37) 147 (± 8) -16.6 (± 2.4) 59.3
Iceland 19.0 (± 2.12) 119 (± 7) -12.1 (± 0.6) 15.1
Kamchatka 113.5 (± 4.53) 74 (± 2) 2.0 (± 1.3) 33.5
Kerg_Heard_Is 12.4 (± 3.42) 304 (± 16) -1.8 (± 1.0) 25.7
New_Zealand 11.5 (± 2.47) 213 (± 12) -3.5 (± 0.7) 17.9
Norway 37.5 (± 3.99) 60 (± 6) 2.2 (± 1.2) 28.7
Nova_Zembla 27.5 (± 2.38) 30 (± 5) -4.9 (± 0.7) 17.5
Oct_revo_Is_Rus 16.2 (± 3.01) 284 (± 11) -3.9 (± 0.9) 22.1
Patagonia 47.9 (± 9.92) 336 (± 12) -41.4 (± 2.8) 73.5
Qn_Elizabeth_Is 7.8 (± 4.85) 85 (± 37) -28.5 (± 1.4) 37.0
Svalbard 19.6 (± 2.49) 117 (± 8) -4.3 (± 0.7) 18.1
Tien_Shan 52.3 (± 5.53) 111 (± 6) 4.3 (± 1.6) 41.8
Total 433.1 (± 28.81) 92 (± 4) -148.7 (± 8.5) 224.2

Table 5.7: Estimated mass variations of the land glacier clusters

Variations in Hydrology
In the inversion, the principal components, associated with the first 60 hydrological EOFs
from WGHM, are estimated from the GRACE and altimetry data. This allows a direct
comparison with the principal components coming from the analysis of WGHM. For the
first 18 modes, explaining 94% of the total variance, these curves are plotted against each
other in Fig. 5.19.

Compared to WGHM, the seasonal amplitudes in the first two modes, are larger for the
inversion. For the other modes, we generally see an increased variability of the estimated
curves. The increase in amplitude and variability is in agreement with the calibration study
of Werth and Güntner (2010). In the tropical realm of WGHM, they found the model un-
derestimating the seasonal amplitude and variability compared to GRACE. In contrast, at
higher latitude regions, they found that the model overestimated GRACE. However, such a
latitudinal dependency can not be spotted from Fig. 5.19, and the displayed variations are
likely to be dominated by the tropical component of the model, which is more important
in terms of variance.

From the secular modes 7 and 9, one can also observe that the inversion generally yields
larger trends. This would suggest that GRACE data may play an important role for cor-
recting the trends in assimilation schemes (Eicker et al., 2014).
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Figure 5.19: Time variation of the first 18 principal components of the changes in terrestrial
total water storage. The scales, as estimated by the inversion, are plotted along the prin-
cipal components which were computed from the PCA of the dataset from WGHM Döll
et al. (2003). The percentages denote the variance explained (per mode/cumulative).
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5.2 Inversion for Fingerprint Magnitudes

5.2.4 Geocenter Motion from the Fingerprint Inversion

All the patterns, which flow into the observation equations are available in the CF frame.
Consequently, the estimated scales, can be propagated in terms of geocenter motion (here
CM-CF), by using the degree 1 coefficients of the patterns.
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Figure 5.20: Geocenter motion (CM-CF) as obtained from the fingerprint inversion esti-
mates. The signal is split up in a present day component (all ice-sheets, glaciers and
hydrology) and a GIA component. For comparison the solution from an earlier inversion
(Rietbroek et al., 2012a) is also shown. The contribution of the atmosphere and modelled
ocean mass is not included.

The present day component, estimated from the inversion is plotted in Fig. 5.20. Further-
more, the geocenter motion is also decomposed in a contribution from Greenland, Antarc-
tica, hydrology, land glaciers, and GIA. The corresponding annual amplitudes, phases and
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Annual Trend RMS
A (mm) ta (doy) mm/yr post.

Antarctica (X) 0.02 (± 0.01) 249 (± 19) 0.02 (± 0.01) 0.04
(Y) 0.03 (± 0.01) 256 (± 15) 0.03 (± 0.01) 0.06
(Z) 0.18 (± 0.03) 67 (± 10) 0.10 (± 0.02) 0.32

Greenland (X) 0.07 (± 0.01) 101 (± 9) -0.09 (± 0.01) 0.06
(Y) 0.04 (± 0.01) 284 (± 9) 0.05 (± 0.01) 0.04
(Z) 0.23 (± 0.04) 99 (± 10) -0.28 (± 0.02) 0.21

Hydrology (X) 1.51 (± 0.19) 93 (± 5) 0.14 (± 0.04) 0.42
(Y) 1.47 (± 0.18) 307 (± 7) -0.02 (± 0.05) 0.48
(Z) 2.27 (± 0.31) 67 (± 6) -0.10 (± 0.07) 1.02

Glaciers (X) 0.04 (± 0.02) 233 (± 26) -0.02 (± 0.01) 0.07
(Y) 0.08 (± 0.03) 150 (± 27) 0.05 (± 0.01) 0.11
(Z) 0.57 (± 0.06) 94 (± 4) -0.08 (± 0.02) 0.14

Total(PD) (X) 1.54 (± 0.19) 95 (± 5) 0.03 (± 0.04) 0.40
(Y) 1.42 (± 0.19) 303 (± 7) 0.12 (± 0.05) 0.50
(Z) 3.16 (± 0.35) 75 (± 4) -0.31 (± 0.08) 1.11

GIA (X) - - -0.05 (± 0.02) -
(Y) - - 0.14 (± 0.05) -
(Z) - - -0.29 (± 0.10) -

Rietbroek et al. (2012a)(PD) (X) 1.28 (± 0.02) 104 (± 1) -0.14 (± 0.01) 0.22
(Y) 1.36 (± 0.02) 303 (± 1) 0.12 (± 0.01) 0.33
(Z) 2.64 (± 0.05) 108 (± 1) -0.38 (± 0.02) 0.68

Rietbroek et al. (2012a)(GIA) (X) - - -0.14 (± 0.05) -
(Y) - - 0.31 (± 0.10) -
(Z) - - -0.71 (± 0.23) -

Wu et al. (2010)(PD) (X) - - -0.08 (± 0.04) -
(Y) - - 0.29 (± 0.05) -
(Z) - - -0.16 (± 0.07) -

Wu et al. (2010)(GIA) (X) - - -0.10 (± 0.01) -
(Y) - - 0.11 (± 0.02) -
(Z) - - -0.72 (± 0.06) -

Swenson et al. (2008)(PD) (X) 1.67 (± 0.05) 96 (± 2) -0.14 (± 0.01) 0.56
(Y) 1.31 (± 0.05) 288 (± 2) -0.06 (± 0.01) 0.54
(Z) 2.25 (± 0.05) 93 (± 1) -0.29 (± 0.01) 0.72

Table 5.8: Annual amplitude, phase and trend of the geocenter motion (CM-CF) from the
fingerprint inversion. For comparison, the geocenter estimates from Rietbroek et al.
(2012a), Wu et al. (2010) and Swenson et al. (2008) are also provided. ’PD’ denotes present
day effects.
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5.2 Inversion for Fingerprint Magnitudes

trends can be found in Table 5.8.

Similar, to the discussion on the mean sea level changes in Sec 5.2.1, the hydrologic com-
ponent is responsible for most of the variability in the geocenter motion. The majority of
the seasonal signal and residual variability and in the present day geocenter motion, is
caused by hydrology.

From Table 5.8 and Fig. 5.20 it is clear that the results from Rietbroek et al. (2012a) have
a somewhat smaller seasonal amplitude. This is mainly because I obtained these earlier
estimates from an 11 week running mean. In the Z component, which is the most difficult
component to estimate, a larger discrepancy can be found. The exact cause for this remains
unclear, but it should be sought in processing differences between the current study and
that of Rietbroek et al. (2012a).

From all the sources, hydrology exhibits the largest trend in the X direction (0.14 mm/yr).
It must be said however that this trend is compensated by the negative X-trends from
Greenland and the land glaciers, yielding an insignificant trend for the total present day
X component. Earlier results from Wu et al. (2010) and Rietbroek et al. (2012a), showed
negative trends for the X component. A likely explanation for this discrepancy is that the
inter-annual variation of hydrology may yield different X-trends depending on the time
interval used.

In the Z direction, the present day mass changes are associated with a trend of -0.31±0.08
mm/yr. The main contributor to these changes are actually caused by the Greenland ice
sheet, which alone contributes already -0.28/mmyr.

Considering the GIA induced trends, these are roughly a factor two smaller than those
estimated in Rietbroek et al. (2012a). The reason is that the mantle viscosity of the a priori
GIA model is different, which causes smaller amplitudes in the geocenter motion (Klemann
and Martinec, 2009). The largest component is, as expected, the Z-direction, on which the
dissapearance of the Laurentide glacial has a large role. Wu et al. (2010) observed that the
a priori GIA Z-component changed from -0.48 mm/yr to an estimated -0.72 mm/yr. Consid-
ering the discussion, above the strong estimated GIA signal in Greenland may have also
contributed to this trend, while in Rietbroek et al. (2012a), the lower mantle viscosity was
a more likely explanation.

5.2.5 Steric Sea Level Changes

Similar to the hydrological parameters, the estimated steric principal components from the
inversion, can be compared to the ones as computed from the steric height changes derived
from Ishii and Kimoto (2009) (see Section 4.2.1). The time variation of the first 18 modes,
explaining 81% of the variance, is plotted in Fig. 5.21.

From Fig 5.21, it is clear that the estimated principal components follow the original
ones closely. In particular, the inter-annual variations are well captured by the inversion.
Peculiar is that the higher modes from the Ishii data are more susceptible to oscillations
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compared to their estimated counterparts. One can suspect that these oscillations point
to spatial-temporal sampling problems in the original ARGO data. Clearly, the inversion
results do not seem to be affected by this, and the altimeter data yields smoothly varying
estimates.

From the inversion, steric sea level can be reconstructed by multiplying the estimated
PCs with their corresponding EOFs. Here, both the EOFs from Ishii and Kimoto (2009) as
well as the ’bootstrapped’ patterns are used. As discussed in Sec. 4.2.1, these bootstrapped
patterns are necessary to extract all the relevant signals from the altimetry, and prevent an
underestimation of the steric signal.

For each grid point of the reconstructed steric height, an annual harmonic and trend is
fitted. The corresponding trend and the RMS of the residual are plotted at the top of Figure
5.22. The reconstructed trend is very similar to the sea level trend from Jason-1 only (see
Fig. 5.22). The typical structure in the North Pacific points to the influence of the Pacific
Decadal Oscillation, which has been entering a cooling phase since 2003. The strong neg-
ative trend in the equatorial Pacific also points to the strong La Niña, which occurred in
2010. Residual effects of the El Niño Southern Oscillation (ENSO) can still be spotted in the
spatial RMS. Both oscillations have spatially similar patterns and are therefore difficult to
separate on these time scales.

To study the steric changes in the deeper part of the ocean, the steric component of the
upper 700m of the ocean from the Ishii data is subtracted from the . The remaining sea
level variations should provide some hints on the structures which are associated with
deep ocean changes. Similar as above, the fitted trend, and residual σ is plotted in the mid-
dle section of Fig. 5.22. Although smaller in magnitude, the resulting trend has a much
more uniform structure. In particular, the large negative trend in the equatorial Pacific has
now become positive. Furthermore, a strong reduction of the RMS can be observed in the
equatorial Pacific, which hints to the removal of a large part of the ENSO.

Finally, the total reconstructed sea level has been subtracted from the gridded altimetry
data. The associated trend and residual RMS is shown at the bottom of Fig. 5.22. The
remaining trend shows little or no large scale signals, which suggests that most of the al-
timetry trend signal has been absorbed in the unknowns. The standard deviation of the
residual, on the other hand still shows regions with large variability originating from the
altimetry data. However, these variations can be mostly attributed to dynamic effects such
as meso- scale eddies and planetary rossby waves. Such features are in fact expected to end
up in the altimetry residuals.

Regarding the retrieval of steric variations, the fingerprint inversion pursued in this the-
sis come with a set of advantages compared to the more straightforward approach to derive
steric changes from the difference of altimetry and GRACE (e.g. Lombard et al., 2007).

Firstly, in the inversion approach, the mass induced component and steric induced com-
ponent are estimated simultaneously from GRACE and Altimetry. Although, the altimetry
appear to have little influence on the mass-related parameters from a formal perspective
(see Sec. 4.2.3), it does change the estimated hydrology in terms of the associated mean sea
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Figure 5.21: Time variation of the first 18 principal components of the steric sea level
changes. The scales, as estimated by the inversion, are plotted along the principal com-
ponents which were computed from the PCA of the dataset from Ishii and Kimoto (2009).
The percentages denote the variance explained (per mode/cumulative).
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Figure 5.22: Reconstructed steric sea level trend and the standard deviation of the residual
(after removing the mean, trend and annual harmonic curve per grid point). The middle
plots shows the trend and standard deviation of the reconstructed steric sea level but
now with the gridded steric height from the upper 700m of Ishii and Kimoto (2009) re-
moved. The bottom plots display the trend and the standard deviation of the altimetric
residual after removing the total fit (mass-induced, GIA and steric sea level and the effect
of the nuisance parameters).
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level change (not shown here).

Another advantage stems from the step-wise parameterization of the steric variations
in the inversion, where the initial 100 EOFs from the Ishii data are augmented with an
additional 60 bootstrapping EOFs derived from the altimetry residuals. This step-wise ap-
proach allows a decomposition of the steric component into a shallow and a residual deep
ocean component. Such decompositions provide valuable insights in the ongoing discus-
sion of the deep ocean warming which is expected from the radiation imbalance of the
Earth system. The results here are consistent with a signaificant warming in the deeper
ocean.

Finally, in the straightforward approach (Altimetry minus GRACE), a large and uncer-
tain GIA correction has been applied to GRACE (~1.7 mm/yr in terms of ocean-averaged
equivalent water height), whereas the altimetry needs to be corrected only by ~0.3 mm/yr

(Lombard et al., 2007). The GIA correction in the inversion approach is consistently co-
estimated from the data. Furthermore, since the mass induced sea level in the inversion
is parameterized by equipotential surfaces, the effect of the GIA error remains small com-
pared to the situation where equivalent water heights are computed directly from GRACE.
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6 Conclusions and Outlook

6.1 Conclusions

The motivation for this thesis work was to investigate whether the joint inversion of geode-
tic observations is of benefit to the accuracy and separability of estimated surface loading.
For that means, I’ve investigated two types of joint inversion schemes. On the one hand,
GRACE data, GPS network deformations, and modelled OBP were combined to resolve for
weekly spherical harmonic coefficients of surface loading. On the other hand, observations
from GRACE and Jason-1 and 2 have been jointly inverted for steric sea level changes, GIA
and time varying mass changes of the ice sheets, glaciers and hydrology.

The combination of different types of observation remains an exciting but challenging
exercise. In the weighing of the different observation types, careful consideration must be
given to both the technique specific signal content as well as the nature of their errors.

The provided results and the methodology are relevant to a wide range of studies. On the
one hand, the results of the weekly inversion shed light on sub-annual and annual surface
loading variations. These are in particular important to better understand the hydrological
water cycle. The inclusion of GPS data in the inversion also ensures that reference frame is-
sues are treated in a consistent way, and allows the study of the center of mass of the Earth’s
system relative to other more ’intuitive’ reference system origins such as for example the
center of surface figure of the Earth.

The results of the fingerprint inversion provide valuable insights into the behavior of the
Earth’s Ice-sheets, and furthermore allow a consistent separation of present day sea level
variations. In addition to providing estimates of mean sea level changes, spatially varying
sea level changes are also addressed which play an significant role when studying coastal
sea level changes.

From a methodological perspective, this work describes a theoretical framework, which
can serve as a start for future inversion schemes, possibly incorporating more data from
auxiliary sources.

Improvement of Accuracy
From a formal error perspective, it is not always obvious that an increase in accuracy is
obtained from the joint inversion. For example, in the inversion of weekly surface loading,
the GPS data appears to play only a minor role in terms of its formal (error) contribution.
However, to conclude that the inversion results are not affected by GPS, would be simply
wrong. The GPS data provide important information (e.g. degree 1 information, land cov-
erage w.r.t. OBP), which are absent in the other datasets. Furthermore, the off-diagonal
elements of the error-covariance do have a significant influence on the estimated parame-
ters. A GPS+GRACE derived geocenter motion is more accurate than one obtained from
GPS only, even though GRACE can not directly observe the geocenter motion.
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A similar conclusion can be reached for the fingerprint inversion results. The formal er-
rors of Fig. 4.19 seem to indicate that the altimetry data has no effect on the mass related
parameters. Although not shown here explicitly, the altimetry data however do seem to
have leverage on the mass related parameters, in particular the parameters related to ter-
restrial hydrology.

Improvement of Separability
The most important advantage of the joint inversion approach, is that the complementari-
ness of the used data can be exploited, while ensuring consistency. The geocenter motion
from a joint inversion is less noisy than using GPS only. In the joint inversion, the addition
of GRACE data serves as a strong constraint on the higher degrees preventing higher de-
gree loading effects to alias in the geocenter motion.

The nature of the ’fingerprint’ inversion makes it in particular very suitable for separabil-
ity problems. The combination of GRACE with altimetry, results in a physically consistent
treatment of the time varying geoid over the ocean. Accordingly, steric changes in the
ocean can therefore be separated from the mass induced variations, without the need for
assumptions on the geoid.

Furthermore, the inversion allows the decomposition of the sea level contributions, in
their major components (Greenland, Antarctica, land glaciers, hydrology, and GIA). The
use of self-consistent sea level fingerprints furthermore allows non-uniform sea level change
to be studied. This latter aspect is important for the planning and policy regarding coast-
line defense.

Geophysical Interpretation of the Weekly Surface Loading
It has been frequently mentioned that the joint inversion of GPS, GRACE and modeled
ocean bottom pressure yields an estimate of the geocenter motion. When the ocean and at-
mosphere is included, the geographical position of the geocenter roughly traverses a great
circle every season, crossing cental Asia in Winter and then passing over Europe and the
Atlantic in spring. Over the year the magnitude of the CM-CE offset, varies seasonally
between 1.8 mm to 3.2 mm. In terms of Cartesian components, the Y component exhibits
the largest amplitude (3.5 mm). However, when the atmospheric and oceanic background
models are removed, the series contain less high frequency variation and the Z component
is larger than the X and Y component. It should be noted that the surface load are very
sensitive to changes in the geocenter motion. A geocenter motion offset of 1 mm manifests
itself as a equivalent water height of 3.1 mm.

Within the inversion, 7 Helmert parameters were fitted to the GPS network every week.
These are intended to absorb residual network errors of the GPS stations and can be safely
estimated simultaneously with the degree 1 surface loading coefficients. In terms of transla-
tions and rotations, the terms remain small (generally below 0.5 mm at the Earth’s surface).
Somewhat larger network changes (about 1 mm) are caused by the estimated scale param-
eter, which is thought to be more sensitive to errors in the solar radiation pressure model,
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as applied to the GPS satellites.

The inversion results have been propagated and subtracted from the GPS station defor-
mations. As expected, the inversion results are responsible for a significant part of the
deformation in zenith direction for most of the stations. The horizontal components seem
to show only little or no reduction when the propagated inversion results are subtracted.

A comparison of the estimated ocean bottom pressure with data from in situ recorders,
generally shows an improvement in correlation over the OBP from the background model.
Agreements on sub-monthly time scales are also visible for well-performing recorders.

For a variety of watersheds, the time variable basin averages have been computed from
the joint inversion results. Additionally, equivalent series have been computed from a
constrained GPS-only surface loading inversion. Good agreements between the GPS-only
solution and the joint inversion were found for some basins well covered by GPS stations
(e.g. Danube). However, truncation problems, leakage effects, and sparse GPS sampling
caused large discrepancies in other watersheds, most notably the Orinoco basin.

Geophysical Interpretation of the Fingerprint Inversion Results
The ’fingerprint’ inversion, where observed gravity and altimetric sea level is linked through
unknown time varying scales through a set of predefined patterns, yields to a variety of
geophysical insights.

The total mean sea level rise over the period from Jan 2003 to Dec 2011, has been esti-
mated as 2.5±0.11 mm/yr. The mass induced contributions can be further decomposed into
the mass induced sea level contributions: 0.66±0.01 mm/yr (Greenland), 0.40±0.03 mm/yr

(Antarctica), 0.43±0.02 mm/yr (Land glaciers), and -0.20±0.09 mm/yr (Hydrology). From these
contributions, the hydrological component exhibits the strongest (inter)annual variations.
Consequently, this is also the component which introduces the largest errors in the trends.
Compared to the modeled hydrological variations from WGHM, the inversion point to
stronger seasonal amplitudes.

The contribution of the steric sea level is estimated to be 1.2±0.14 mm/yr. This contribu-
tion can be further split up in two components. The patterns and scales, representative
for the upper 700 m of the ocean, yield 0.17±0.08 mm/yr. The other component, representa-
tive for complementary effects (e.g. the deeper part of the ocean), yields a much stronger
value of 1.03±0.10 mm/yr. This large trend is therefore a serious indication that the deeper
part of the ocean is warming significantly. Alternatively, I’ve subtracted the spatial steric
variations of the upper 700 m of the ocean from the steric variations of the inversion. The
remaining trend exhibits basin-wide trends in the Pacific and Indian Ocean. It is worth
noting that natural oscillations such as the El Niño - La Niña cycle and the Pacific decadal
oscillation mainly seem to be confined to the upper layers of the ocean.

The second set of steric pattern is obviously important. In the course of this work, it
turned out that a parameterization, using only the EOF modes derived from the steric
heights from Ishii and Kimoto (2009), did not suffice to explain the altimetric observations.
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Although the estimated principal components from the inversion compare very well with
the computed principal components from the ARGO data, large scale signals were visi-
ble in the residuals which were in the same order of the estimated steric variations itself.
For this reason, an additional set of steric (bootstrapping) patterns was created based on
an EOF analysis of the initial altimetry residuals. It is possible that some residual bottom
pressure effects due to wind stress errors of the a priori ocean model are contained within
these bootstrapping modes. Different wind stress fields may cause regionally different
ocean bottom pressure changes through the mechanism of Ekman pumping. However, on
a global scale, such effects are unable to explain the large trend found in the global mean
sea level.

From the estimated GIA signal, the inferred geocentric correction to global mean sea level
is estimated to be -0.16 mm/yr, which is about half of the correction which is commonly ap-
plied (-0.3 mm/yr from Douglas and Peltier, 2002). However this feature is mostly related
to the set up of the GIA model. Relatively, strong constraints need to be applied to the
GIA parameters, in order to obtain realistic values. The results from the inversion indicate
that the Laurentide GIA signal is underestimated in the a priori model, while the Antarctic
component is over estimated. Unfortunately, the trend of the Antarctic GIA component is
highly correlated with some drainage variations in Antarctica, making it difficult to sep-
arate the contributions. This has also been observed in other studies which used GRACE
data (e.g. Velicogna and Wahr, 2006b; Horwath and Dietrich, 2009; Wu et al., 2010).

The mass losses over the entire Greenland ice sheet total -253±4.3 Gt/yr (2003-2011), where
it should be noted that the uncertainties coming from the GIA component may be some-
what understimated because of the applied constraints. The inversion indicates that the
losses are confined to the coastal regions with lower elevations, while some of regions at
higher elevations exhibit positive trends. The estimated mass losses are smaller than earlier
estimates, using shorter time spans, confirming an acceleration of the mass loss in Green-
land. This is also obvious from the estimated time variations in the drainage basins.

The mass loss of the Antarctic Ice sheet, totaling -147 Gt/yr, largely originates from the
Amundsen sea sector. In this region, the GIA signal is expected to be small, such that
these are clearly significant losses. However there are several basins which are strongly
affected by the GIA signal. For example Sasgen et al. (2012a) found a significantly smaller
total trend (-103 Gt/yr) for Antarctica. The discrepancy can be attributed to a different GIA
strength. Interesting is, that when I would apply weaker constraints to the Antarctic GIA
component, the results of this study would move towards those of Sasgen et al. (2012a).
Compared to the variations in Greenland, the time variations in the Antarctic exhibit more
fluctuations, which are likely related to precipitation events in the coastal zones.

The land glaciers are losing mass with a rate of -149±9 Gt/yr, which is comparable with
the Antarctic contribution and confirms the findings of Jacob et al. (2012). Many glacier
clusters exhibit considerable (inter)annual variations, although annual variations of the
Arctic clusters appear to be somewhat smaller. Highly significant are the mass losses on
the Alaska coast -44.1 ±2.5 Gt/yr, Patagonia -41.1 ±2.8 Gt/yr and on the Queen Elizabeth Is-
land (-28.5±1.4 Gt/yr mainly from Ellesmere Island). Although much smaller and not as
significant, the largest positive trend (5.5±1.2 Gt/yr), is found in the Brooks range in north-

135



6 Conclusions and Outlook

ern Alaska.

The geocenter motion as inferred from the inversion results, are indicating significant
trends in both the present day contributions as well as the GIA contributions. Considering
the GIA contribution, we see that the X and Z trends are about a factor of 2 smaller com-
pared to the estimates of Rietbroek et al. (2012a) and Wu et al. (2010). On the one hand,
the difference can be sought in the lower mantle viscosity of the a priori GIA earth models,
which affects the magnitude of the geocenter trend strongly. Another effect may come from
the contribution of Greenland, which is shown to be relatively large for the Z trend. The
Greenland signals found by Wu et al. (2010) (large GIA signal and a relatively small present
day loss) may therefore also hav an effect on their estimated geocenter trend.

The present day trend of the geocenter (with the components: X 0.03±0.04 mm/yr, Y
0.12±0.05 mm/yr, Z -0.31±0.08 mm/yr), is too large to be simply ignored in GRACE-only stud-
ies of Antarctica. If the associated degree 1 trends are averaged over Antarctica a positive
gain of 20 Gt/yr is obtained. The net effect of the geocenter trend on the Greenland mass
balance is much less, simply because the area of Greenland is smaller, amounting only to
-3 Gt/yr. The gross of the Greenland mass loss is therefore contained within the higher de-
gree coefficients.

The seasonal geocenter component agrees to within 0.8 mm amplitude and 40 days of
phase with the results of the weekly surface loading inversion, when considering the same
time span. This discrepancy exceeds the formal error estimates, and is likely related to the
way the ocean is treated. Whereas the ocean bottom pressure in the fingerprint inversion is
induced by an equipotential surface, bottom pressure variations from a non-equipotential
ocean response are also present in the weekly solutions.

6.2 Outlook

The inversion schemes developed in this thesis are promising tools which may be improved
for future studies. Both schemes, estimating generic surface loading coefficients versus es-
timating scales from tuned fingerprints, have their advantages and disadvantages.

A major improvement of the GPS+GRACE+OBP scheme, would be the inclusion of
trends in the inversion. Up to now, a secular reference frame has been subtracted from
the GPS station deformations, and the GRACE and OBP data have been detrended. The
challenge of including the trends, will be that a GIA signal has to be co-estimated. This will
be very difficult in regions where the present day loading patterns look similar to the GIA.
Furthermore, trends in the GPS data may also be caused by geophysical signals in the solid
Earth which are neither of GIA or surface loading origin.

Both schemes can be improved by incorporating additional data sources. The GPS data
may be used in the fingerprint inversion, and the altimetry may be a helpful ocean con-
straint for the weekly surface loading. Furthermore SLR data may be added to constrain
the lowest gravity coefficients. Tide gauges may provide constraints at the coastlines as
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long as they are not dominated by local signals. And data from gravimeters may pro-
vide important information as well. Volumetric measurements of the ice sheet (e.g. ICEsat
and Cryosat2) are interesting candidates, although additional problems (and opportuni-
ties) with firn density may be introduced at the same time. In addition, Cryosat2 poten-
tially offers information on the thickness of the sea-ice, which would allow an extension of
the method into the Arctic.

The addition of new data sources potentially allows the extension of time series of mass
storage changes beyond or before the GRACE time span. For example Nerem and Wahr
(2011) showed that SLR-derived changes in the Earth’s oblateness are related to mass losses
of the major ice sheets, and that SLR can aid in studies of Greenland and Antarctica before
the GRACE era.

Furthermore, a low degree time varying gravity field from GPS and LEO satellites in the
past decades, would be a great tool to reprocess and improve past altimeter orbits such a
those from TOPEX. In the near future, joint inversion techniques, may also aid in bridging
the gap between GRACE and its follow on mission (Rietbroek et al., 2014).

The weekly sets of spherical harmonic surface loading coefficients, are resolved up to
degree 30 only. This limitation is induced by the density of the ground track patterns of
GRACE. To resolve higher resolution signals, more data from outside the week is needed.
A promising techniques to do this is to apply a Kalman filter/smoother approach (Kurten-
bach et al., 2009). An additional benefit is that the higher resolution will at the same time
also decrease the truncation error which is made in the surface loading Green’s functions.

In the fingerprint inversion, all of the currently used patterns are standing waves which
oscillate in time but not in space. However, a variety of geophysical signals exist which
are associated with patterns which move in time. A relevant example is for example the
ocean’s response to the computed meltwater input. The associated steric effects have been
demonstrated to propagate along the boundary currents in time (Brunnabend et al., 2012).
The use of patterns with propagating features is challenging but may offer interesting geo-
physical insights, and avoid signals to be split up in too many modes.

The orthogonality of the spatial EOFs is numerically advantageous when applied as base
functions in the fingerprint inversion. However, single EOF modes are very difficult to in-
terpret physically, as geophysical phenomena are not necessarily orthogonal. Future work
may therefore benefit from a decomposition which is derived from Independent Compo-
nent Analysis (ICA, Forootan and Kusche, 2012). In the ICA method, the EOFs are rotated
based on their higher order statistical moments, in such a way that the modes are statis-
tically independent in either the time or spatial domain. Most of the time, the resulting
independent modes are easier to interpret physically. On a regional scale, a fingerprint
inversion, using the spatial information from an independent component analysis, has al-
ready provided valuable physical insight in water resource problematics in Iran (Forootan
et al., 2014).

The current parameterization of the GIA signal, silently postulates that the true GIA
signal can be represented by a linear combination of GIA components. In reality this ap-
proximation may be (partly) incorrect. Roughly speaking, changes in the most uncertain
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components, namely ice mass and mantle viscosity, appear as scaling effects in the GIA in-
duced geoid and uplift. However, a different spatial structure of the ice history, which may
be the case in for example Antarctica, will also induce spatially different GIA responses.
Furthermore, changes in the rigidity and thickness of the crust may affect the position of
the peripheral bulge in the vicinity of the ice sources. To parameterize such effects in terms
of (linear) fingerprints is at least challenging, and is further complicated by the fact that ad-
ditional degrees of freedom of the GIA parameterization render the inverse problem even
more ill-posed than that it is already.

In the current inversion scheme, the altimeter and GPS orbits are derived from gravity
fields which are not consistent with GRACE. Ultimately, a unification is desirable where a
’grand’ inversion scheme allows only a single gravity field to affect all the relevant orbits.

The Artic contribution to (mean) sea level appears to be significant (0.18 mm/yr in terms
of mean sea level rise). However, besides the GRACE data, no observational constraints on
the sea level are entering the fingerprint inversion. Consequently, the steric sea level change
in the Artic should be considered as an extrapolation using the steric modes obtained from
the data from Ishii and Kimoto (2009). This approach can potentially be improved by ap-
plying observational or modeling constraints in the Artic region. Unfortunately, observa-
tional monitoring data in this region is hardly available.
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A Translation of the Geopotential Field

The external potential at a shifted position, r2 = r1 + x, may be expressed by a spherical
harmonic expansion. In contrast to Eq. 2.3, it is convenient to use normalized complex
spherical harmonics1. These have the properties

Ȳm
n (θ, λ) =

√
(2n + 1)

(n−m)!
(n + m)!

Pnm(cos θ)eimλ, (A.1)

Ȳm∗
n (θ, λ) = (−1)mȲ−m

n (θ, λ), (A.2)∮
Ω

Ȳm
n (ω)Ȳm′∗

n′ (ω)dω = 4πδnn′δmm′ . (A.3)

where the asterisk denotes the complex conjugate.

The potential at position r2 may now be written using complex Stokes coefficients Cm
n :

φ(r2) =
GM

a

∞

∑
n=0

n

∑
m=−n

(
a
|r2|

)n+1

Cm
n Ȳm

n (Ω2). (A.4)

The real valued Stokes coefficients can be derived from the relations:

Cm
n =

1√
2
(Cnm − iCn−m) , m > 0,

C0
n = Cn0, m = 0, (A.5)

Cm
n = (−1)mC−m∗

n , m < 0.

The irregular solid spherical harmonic base functions on the right hand side of Eq. A.4
may be written in terms of a reference system shifted by, x. Applying the proper normal-
ization one obtains from Giacaglia and Burša (1980) the following relation

1
rn+1

2

Ȳm
n (Ω2) =

∞

∑
n′,m′

An,m,n′,m′
1
|x|n+1

(
|x|
|r1|

)n′+1

Ȳm′
n′ (Ω1)Ȳm′−m∗

n′−n (Ωx), |r1| > |x|, (A.6)

where,

An,m,n′,m′ = (−1)n+n′

√
(2n+1)
(2n′+1)

(n′+m′)!(n′−m′)!
(n+m)!(n−m)!√

(2n′ − 2n + 1)(n′ − n + m′ −m)!(n′ − n−m′ + m)!
, (A.7)

and Ω1 and Ωx are the angles associated with r1 and x respectively. Substituting A.6 in A.4
and changing the order of summation yields after some manipulation:

φ(r2) =
GM

a

∞

∑
n′=0

n′

∑
m′=−n′

(
a
|r1|

)n′+1

C̃m′
n′ Ȳ

m′
n′ (Ω1). (A.8)

1using vertically positioned degree and order
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A.1 Position of the Center of Mass of the Earth System

The transformed Stokes coefficients, C̃m′
n′ , are now linearly dependent on the original

coefficients Cm
n :

C̃m′
n′ =

n′

∑
n=0

n′+m′
2

∑
m=− n′−m′

2

Cm
n

(
|x|
a

)n′−n

An,m,n′,m′Ȳm′−m∗
n′−n (Ωx). (A.9)

The start and end indices are changed due to the restrictions of the degree and order.
Only a limited combination of n and m yield non-zero values as is depicted by the shaded
region in Fig. A.1.

Non−zero combinations of n,m

n<=n’

n>=mn>=−m

n<=n’+m’−m

n<=n’−m’+m

m

n

Figure A.1: Obeying four constraints, the double summation from Eq. A.9 will only yield
non-zero combinations for n and m in the shaded area.

A.1 Position of the Center of Mass of the Earth System

The center of mass of the Earth system is the position, xCM where the degree 1 Stokes
coefficients of the translated potential field vanish. From Eq. A.9 one can derive for n′ = 1,
m′ = 0, 1 the following relation:

C̃m′
1 = 0 = −1

3
C0

0
|xCM|

a
Ȳm′∗

1 (Ωx) + Cm′
1 Ȳ0

0 . (A.10)

Substituting C0
0 = 1 (the central gravity term) and Ȳ0

0 = 1, and observing that in Carte-
sian coordinates:

xCM = |xCM|

sin(θ) cos(λ)
sin(θ) sin(λ)

cos(θ)

 = |xCM|
1√
3

 Re{Ȳ1∗
1 (Ωx)}

√
2

− Im{Ȳ1∗
1 (Ωx)}

√
2

Ȳ0
1 (Ωx)

 , (A.11)
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A Translation of the Geopotential Field

one finds:

xCM =
√

3a

 Re{C1
1}
√

2
− Im{C1

1}
√

2
C0

1

 =
√

3a

 C11
C1−1
C10

 . (A.12)

A similar proof can be found in Klemann and Martinec (2009).

A.2 Small Translations of the Potential Field

As Eq. A.9 shows, all of the Stokes coefficients will change under a translation. However
for small geocenter related offsets, typically smaller than 1 cm, |x| << a. First order terms
in Eq. A.9 will only occur for n′ − n ≤ 1. Furthermore, besides the central gravity term,
the second largest term in the gravity field is related to oblateness of the Earth (degree 2
and order 0). When the Earth gravity field is approximated by an ellipsoid only the zero
order terms (m = 0) are non-zero. Ignoring higher order terms, we see that the Stokes
coefficients of the translated ellipsoid can be written as:

C̃0
n = C0

n − C0
n−1

√
n2

3

√
2n− 1
2n + 1

(
|x|
a

)
Ȳ0

1 , (A.13)

C̃1
n = C1

n − C0
n−1

√
(n + 1)n

3 · 2

√
2n− 1
2n + 1

(
|x|
a

)
Ȳ1∗

1 .

Or in terms of the translation vector and real Stokes coefficients: C̃n1
C̃n−1
C̃n0

 =

 Cn1
Cn−1
Cn0

−
Cn−10

a
n
√

2n− 1
2n + 1


√

(n+1)
2n 0 0

0
√

(n+1)
2n 0

0 0 1

 x.

(A.14)

Besides the degree 1 coefficients, the translated bulge will appear as a ’pear shape’ of the
Earth (Stokes coefficients C30, C31, S31). However, for seasonal variations of the geocenter
motion (Rietbroek et al., 2012b), the effect is in the order of 5e−13 (see Fig. A.2), which about
an order of magnitude smaller as the current accuracy of the monthly degree 3 coefficients
obtainable by GRACE (GFZ Release 05: ≈ 4e−12).

Therefore, as long as the translations are small, one may in practice translate a potential
by merely applying Eq. A.14 to the degree 1 coefficients.
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A.2 Small Translations of the Potential Field
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Figure A.2: Translational effect of the equatorial bulge on the degree 3 Stokes coefficients
due to the seasonal geocenter motion as computed by Rietbroek et al. (2012b) (4.5 mm
annual amplitude).
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B Product to Sum Operator

B.1 Formulation with Complex Spherical Harmonics

The product of two functions expressed as spherical harmonic expansions, S̃, O can by
itself be expressed in an SH expansion1:

S(θ, λ) = O(θ, λ)S̃(θ, λ). (B.1)

The spherical harmonic coefficients of S̃ are truncated at degree and order N. In order
to simplify the derivation, it is convenient to initially use the same complex notation as in
App. A leading to

S̃(θ, λ) =
N

∑
n=0

n

∑
m=−n

S̃m
n Ȳm

n (θ, λ).

The coefficients Snm can be obtained by multiplying Eq. B.1 by the conjugate, Ȳm∗
n , and

integrating over the unit sphere:

Snm =
1

4π

∫
Ω

S(ω)Ȳm∗
n (ω)dω =

1
4π

∫
Ω

O(ω)S̃(ω)(−1)mȲ−m
n (ω)dω. (B.2)

Or when expanding the functions:

Sm
n =

1
4π

∫
Ω

N

∑
n1,m1

∞

∑
n2,m2

Om2
n2

S̃m1
n1
(−1)mȲ−m

n Ȳm1
n1

Ȳm2
n2

dω

= ∑
n1,m1

∑
n2,m2

Om2
n2

S̃m1
n1

(−1)m

4π

∫
Ω

Ȳ−m
n Ȳm1

n1
Ȳm2

n2
dω

=
N

∑
n1,m1

∞

∑
n2,m2

(−1)mOm2
n2

S̃m1
n1

Ann1n2
−mm1m2

.

(B.3)

In this work, the triple integral, Ann1n2
mm1m2 , also known as the Gaunt coefficient is computed

explicitly in terms of Wigner-3j symbols (e.g. Messiah (1961)):

Ann1n2
−mm1m2

=
√
(2n + 1)(2n1 + 1)(2n2 + 1)

(
n n1 n2
0 0 0

)(
n n1 n2
−m m1 m2

)
. (B.4)

The Wigner-3j symbols itself can be computed by recursive formulas (Luscombe and
Luban, 1998)2. In fact, most combination of the Wigner-3j symbols will be zero except

1although the notation used here corresponds to notations for the ocean function and Sea level, the actual
functions may be arbitrary.

2This algorithm has been implemented in the Fortran library SHTOOLS. In this work, the routine has been
modified to enable parallel execution with openMP
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B.2 Formulation with Real Spherical Harmonics

when the following conditions are satisfied:

|n− n1| ≤ n2 ≤ n + n1,
m2 = m−m1,
−n ≤ m ≤ n, (B.5)
−n1 ≤ m1 ≤ n1,
−n2 ≤ m2 ≤ n2.

Furthermore for odd combinations of n + n1 + n2(
n n1 n2
0 0 0

)
= 0, n + n1 + n2 = 2p + 1, p ∈N. (B.6)

This implies that most of the terms in the summation from Eq. B.3 are zero and the inner
sum can be simplified:

Sm
n =

N

∑
n1,m1

 n+n1

∑
n2=|n−n1|

n+n1+n2=2p

(−1)mOm−m1
n2

Ann1n2
−mm1(m−m1)

 S̃m1
n1

=
N

∑
n1,m1

Bnm
n1m1

S̃m1
n1

.

(B.7)

B.2 Formulation with Real Spherical Harmonics

Eq. B.7 may be implemented in matrix form. If the function O is constant, the matrix
entries, Bnn1

mm1 , can be stored for reuse. Furthermore, for a given truncation degree N the
coefficients, Om

n , need only to be computed until 2N. However, when the functions O and
S̃ are real-valued, a 50 % reduction in matrix size can be achieved. Since in that case, a
symmetric matrix with real, instead of complex, entries can be constructed.

For this purpose, it is convenient to sort the coefficients according to their order, and
define the following two vectors:

sT
1 =

[
S−N

N · · · S−2
2 · · · S−2

N S−1
1 · · · S−1

N

]
,

sT
2 =

[
S0

0 · · · S0
N S1

1 · · · S1
N · · · SN

N
]

.

Similarly, the coefficients denoted with the tilde are expanded and the product to sum
operation is written as: [

s1
s2

]
=

[
B11 B12
B21 B22

] [
s̃1
s̃2

]
. (B.8)

The symmetry relations from Eq. A.5 can be used to write the lower section (m ≥ 0) of
matrix vector operation as follows:

Sm
n =

N

∑
n1=0

[
−1

∑
m1=−n1

Bnn1
mm1

S̃m1
n1

+
n1

∑
m1=0

Bnn1
mm1

S̃m1
n1

]

=
N

∑
n1=0

n1

∑
m1=0

[
(−1)m1(1− δ0m1)Bnn1

m−m1
S̃m1∗

n1
+ Bnn1

mm1
S̃m1

n1

]
.

(B.9)
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B Product to Sum Operator

In order to establish the relation between the complex and real coefficients, it is convenient
to use a matrix notation for the complex numbers:

a + ib =

[
a b
−b a

]
, (a + ib)∗ =

[
a −b
b a

]
. (B.10)

This consequently yields for each entry in the summation over n1 and m1:

1√
2− δ0m

[
Snm −Sn−m

Sn−m Snm

]
=

N

∑
n1=0

n1

∑
m1=0

[
Re{Bm−m1

nn1 } Im{Bm−m1
nn1 }

− Im{Bm−m1
nn1 } Re{Bm−m1

nn1 }

]
(−1)m1(1− δ0m1)√

2− δ0m1

[
S̃n1m1 S̃n1−m1

−S̃n1−m1 S̃n1m1

]

+
N

∑
n1=0

n1

∑
m1=0

[
Re{Bmm1

nn1 } Im{Bmm1
nn1 }

− Im{Bmm1
nn1 } Re{Bmm1

nn1 }

]
1√

2− δ0m1

[
S̃n1m1 −S̃n1−m1

S̃n1−m1 S̃n1m1

]
.

(B.11)

The rightmost columns of the matrix multiplication may be ignored because of the symme-
try relation, and a rewriting yields:[

Snm
Sn−m

]
=

N

∑
n1=0

n1

∑
m1=0

Dmm1
nn1

[
S̃n1m1

S̃n1−m1

]
. (B.12)

For clarity, the real coefficients are stacked in vectors, s, s̃, according to the following
scheme:

sT =
[
S00 · · · SN0 S11 S1−1 · · · SN1 SN−1 · · · SN−N

]
. (B.13)

In this way the entire matrix operation looks like:

s = Ds̃, (B.14)

in the real domain.
Where each entry, Dmm1

nn1 , is by itself a 2x2 matrix3:

Dnm
n1m1

=

√
2− δ0m√
2− δ0m1

{
(−1)m1(1− δ0m1)

[
Re{Bm−m1

nn1 }+ − Im{Bm−m1
nn1 }

− Im{Bm−m1
nn1 } −Re{Bm−m1

nn1 }

]
+[

Re{Bmm1
nn1 }+ Im{Bmm1

nn1 }
− Im{Bmm1

nn1 } Re{Bmm1
nn1 }

]}
.

(B.15)

Which can be built using the relation from Eq. B.7:

Bm−m1
nn1

=
n+n1

∑
n2=|n−n1|

n+n1+n2=2p

(−1)mOm+m1
n2

Ann1n2
−m−m1(m+m1)

, (B.16)

Bmm1
nn1

=
n+n1

∑
n2=|n−n1|

n+n1+n2=2p

(−1)mOm−m1
n2

Ann1n2
−mm1(m−m1)

, m ≥ m1, (B.17)

Bmm1
nn1

=
n+n1

∑
n2=|n−n1|

n+n1+n2=2p

(−1)m1Om1−m∗
n2

Ann1n2
−mm1(m−m1)

, m < m1. (B.18)

3For m = 0 and/or m1 = 0, the second row and/or column is removed
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B.2 Formulation with Real Spherical Harmonics

Although, not obvious from the above, the matrix D is symmetric with size (N + 1)2 ×
(N + 1)2. Compared to the complex case, which yields a Hermitian matrix a 50% reduction
in matrix memory is obtained. For example, storing the lower triangle of a matrix with
N = 150, takes up 1.9 Gb instead of 3.9 Gb. More importantly, the matrix can be applied
directly to real spherical harmonic coefficients, which are much more common in geodesy.

For practical use, the lower triangle of the product to sum matrix, D, may be computed
from Eqs. B.12 until B.17 in combination with Eq. B.4. Although not critical for most appli-
cations, the computation has been implemented with a parallelization using openMP, since
all the matrix entries can be computed separately.

Alternatively, Blewitt and Clarke (2003) provide formulas in the case of unnormalized
real spherical harmonic coefficients, by separating the integrals of latitude and longitude.
Due to the absence of normalization, the resulting matrix will however not be symmetric,
and it is possible that entries for high degrees suffer from numerical overflow problems.
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C Operations on Normal Equation Systems

This appendix describes a set of operations which may be applied to systems of normal
equations. Most of these operations are commonly applied in the field of Geodesy, and
can be found in for example (Koch, 1988). Nevertheless, they are described here for com-
pleteness and follow the notation as used throughout this thesis. The methods focus on the
manipulation of the normal equation systems, without the need to have information at the
original observation level.

C.1 Least Squares Solution of a Linear Inverse Problem

Let a set of unknown parameter residuals, stacked in a vector x, be linearly related to a set
of observations d:

A(x + x0) = d + ε. (C.1)

The correlated measurements noise, ε, is described by the error-covariance matrix, Qdd =
P−1

dd . The vector x0 is an approximate solution which is already available before the inver-
sion.

From this observation equation one may compute the well known least squares estimate
by solving the normal equation system for x̂:

Nx̂ = b. (C.2)

Where the normal matrix, N, the right hand side, b, and the parameter residual, x̂ are
build up as follows:

N = ATPA,

b = ATP(d−Ax0). (C.3)

The solution minimizes the weighted measurement residuals or quadratic cost function:

(d−Ax0 −Ax̂)TP(d−Ax0 −Ax̂) = lTPl. (C.4)

The error-covariance of the estimated parameters is given by

Qxx = N−1. (C.5)

Based on the residuals, one may estimate an a posteriori variance factor, σ0 to obtain the
a posteriori error covariance Q̃xx:

Q̃xx = σ2
0 Qxx, with σ2

0 =
lTPl

nd − nx
. (C.6)
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C.2 Reduction of Unknown Parameters

The amount of observations, nd, minus the amount of unknown parameters, nx are the de-
grees of freedom of the overdetermined system, being solved here.

In order to estimate the unknown parameters and an a posteriori covariance scale, one
only needs to store the following normal equation system elements:

N, b, x0, nx, nd,

lT
0 Pl0 = (d−Ax0)

TP(d−Ax0). (C.7)

Without knowledge of the original design matrix or the observations, the value of the
quadratic optimization functional can be obtained by an update of lT

0 Pl0:

lTPl = lT
0 Pl0 − 2x̂Tb + x̂TNx̂ = lT

0 Pl0 − x̂Tb. (C.8)

C.2 Reduction of Unknown Parameters

Often, there are parameters in an inverse problem which need to be solved, but are not
of particular interest. These so-called nuisance parameters may be eliminated from the
solution space of a normal equation system, while still being solved implicitly. This proce-
dure is generally referred to as the reduction of parameters (see for example Kusche (2003))

The normal equation system may be partitioned into nuisance parameters, xr and the
remaining parameters of interest, xc:

N =

[
Nrr Nrc
NT

rc Ncc

]
,

b =

[
br
bc

]
, (C.9)

x̂ =

[
x̂r
x̂c

]
.

Furthermore, the inverse of the partitioned normal matrix may be written as:

[
Nrr Nrc
NT

rc Ncc

]−1

=[
N−1

rr + N−1
rr Nrc(Ncc −NT

rcN
−1
rr Nrc)−1NT

rcN
−1
rr −N−1

rr Nrc(Ncc −NT
rcN
−1
rr Nrc)−1

−(Ncc −NT
rcN
−1
rr Nrc)−1NT

rcN
−1
rr (Ncc −NT

rcN
−1
rr Nrc)−1

]
.

(C.10)

From the lower part of the matrix , the solution xc may now be extracted:

x̂c = −(Ncc −NT
rcN
−1
rr Nrc)

−1NT
rcN
−1
rr br

+(Ncc −NT
rcN
−1
rr Nrc)

−1bc.
(C.11)
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C Operations on Normal Equation Systems

Which may again be written as a reduced normal equation system:

Ñx̂c = b̃,

Ñ = (Ncc −NT
rcN
−1
rr Nrc),

b̃ = bc −NT
rcN
−1
rr br, (C.12)˜lT

0 Pl0 = lT
0 Pl0 − bT

r N−1
rr br,

ñx = nx, ñd = nd.

The degrees of freedom of the system do not change for a reduction, since no observations
are added or removed and the amount of parameters remains constant (but some are now
implicitly solved).

C.3 Changing the a Priori Solution

It is desirable to be able to change the a priori solution x0 in a normal equation system,
without having to resort to the original measurements. This step is necessary, when differ-
ent normal equation systems are to be combined and their signal content needs to be made
consistent. In addition, it is sometimes desirable to fix certain parameters to other a priori
values when they cannot be (accurately) estimated.

Imagine that the a priori values are slightly adapted to a new value x̃0 :

x̃0 = x0 + δx0. (C.13)

In the special case, where the design matrix is not dependent on the to be estimated
parameters, a change in the a priori vector will only affect the right-hand side and the a
priori cost functional, but has no influence on the normal matrix nor does it change the
degrees of freedom of the system:

Ñx̂ = b̃,
Ñ = N,

b̃ = ATP(d−Ax̃0) = b−Nδx0,˜lT
0 Pl0 = lT

0 Pl0 − 2δxT
0 b + δxT

0 Nδx0, (C.14)
ñx = nx, ñd = nd.

C.4 Fixing Parameters to their a Priori Values

A subset, say n f , of the parameters may be fixed to their a priori values and subsequently
removed from the normal equation system. A partitioning of the normal equation system
into parameter which are to be fixed (with subscript ’ f ’) and those which will be kept (with
symbol ’k’) is again useful:

Nx =

[
Nkk Nk f
NT

k f N f f

] [
xk
x f

]
=

[
bk
b f

]
. (C.15)
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C.5 Linear Transformation of the Parameters

Fixing the parameters to their a priori values implies simply x f = 0, and the adapted
normal equation system is a cross section of the original system:

Ñx̂k = b̃,
Ñ = Nkk,

b̃ = bk, (C.16)˜lT
0 Pl0 = lT

0 Pl0,
ñx = nx − n f , ñd = nd.

When fixing the parameters, the degrees of freedom of the system is increased as nx is
decreased by n f .

C.5 Linear Transformation of the Parameters

In many problems in this thesis, situations arise when a set of normal equation system are
available but the parameter set which is of interest is linearly dependent on the unknowns
of the system itself. For this type of transformation, the original normal equation systems
may be transferred in the new solution space.

Let the new solution vector, x̃ be linearly related to the unknowns of the normal equation
system:

x = Bx̃. (C.17)

The matrix B does not need to be invertible or square. The new solution space amounts
to the number of columns of matrix B: nc. The observation equation from C.1 now reads:

ABx̃ = d−Ax0 + ε. (C.18)

Which can be used to build the following normal equation system:

Ñ̂̃x = b̃,

Ñ = BTATPAB = BTNB,

b̃ = BTATP(d−Ax0) = BTb, (C.19)˜lT
0 Pl0 = lT

0 Pl0,
ñx = nc, ñd = nd.

The new a priori vector, x̃0, may be obtained by solving:

Bx̃0 = x0. (C.20)

Which poses a problem when B cannot be inverted. In that case, it is often possible to
apply an approximation by reverting to a generalized inverse. Alternatively, when the ab-
solute values of the problem are not of any particular interest, one may simply force x̃0 = 0
and continue with the interpretation of the residuals only.

C.165



C Operations on Normal Equation Systems

When B is an invertible matrix, the least squares solution of the old and new system are
simply related by the inverse transformation. When the original normal matrix is diago-
nalized with a singular value decomposition, the estimated vector now follows from:

ˆ̃x = Ñ−1b̃,

= (BTDTΛDB)−1BTb,

= (B−1DTΛ−1DB−T)BTb, (C.21)

= B−1x̂.

In practice, there can however be situations where N is (nearly) singular, whereas the
inverse of N̂ is much more stable. In that case, the better choice would be to transform the
normal equations before the solving step.

A common example where normal equation system transformations can be useful is the
introduction of a (linear) time dependency for the unknown parameters. When a normal
equation system holds data for a certain epoch, t, one can introduce a mean and a trend for
each parameter using the (sparse) transformation matrix Bt:

Bt =

1 (t− t0) 0 0 · · ·
0 0 1 (t− t0) · · ·
...

...
...

...
...

 . (C.22)

Of course, in this case , normal equation systems from other epochs are required in a com-
bination to solve the newly introduced parameters.

C.6 Combination and Variance Component Estimation

Combining multiple normal equation systems, which share common parameters, may im-
prove the solution estimate and possibly mitigate (near) rank defects. The combination of
two (or more) systems at the level of the normal equations is relatively straightforward. In
addition, it is possible to estimate separate a posteriori variance factors for the input nor-
mal equation systems. The procedure is known as Variance Component Estimation (VCE)
(Förstner, 1979; Koch and Kusche, 2002).

Let each normal equation system be associated with an a priori variance scale σi. The
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C.6 Combination and Variance Component Estimation

combined normal equation system can be obtained as follows:

Ñx̂k = b̃,

Ñ =
N

∑
i=1

1
σ2

i
Ni,

b̃ =
N

∑
i=1

1
σ2

i
bi, (C.23)

˜lT
0 Pl0 =

N

∑
i=1

1
σ2

i
[lT

0 Pl0]i,

ñx = nx, ñd =
N

∑
i=1

ndi .

The a posteriori variance components, σ̂i, may be estimated by:

σ̂2
i =

[lTPl]i
ri

. (C.24)

Where the redundancy ri is described by:

ri = ndi −
1
σ2

i
trace{NiÑ

−1}. (C.25)

Furthermore, the diagonal entries of the redundancy matrix, 1
σ2

i
NiÑ

−1, indicate the rela-
tive weight system i has in the estimation of the associated parameter. Accordingly, these
values may be used to study the sensitivity of parameters w.r.t. the individual data sources.
For a single system, the a posteriori factor simply reduces to Eq. C.6.

The estimation of σ̂2
i , with Eq. C.24 depends on the a priori values of σ2

i , which are not
necessarily the same. The values can however be made to converge (in most cases), when
the procedure is applied iteratively:

Step 1: Approximate σi = 1, i = 1, .., N (although better initial values yield faster conver-
gence)

Step 2: Compute and solve the combined normal equation system (Ñ, b̃, ˜lT
0 Pl0, ..)

Step 3: Using the solution, compute an update of the system’s weighted measurement resid-
ual (see Eq. C.14):

[lTPl]i = [lT
0 Pl0]i − 2xTbT

i + xTNixT.

Step 4: Compute σ̂2
i

Step 5: Check for convergence σ̂2
i /σ2

i ≈ 1, update σ2
i = σ̂2

i , i = 1, .., N, and possibly reiterate.
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D Principal Component Analysis

Principal component analysis allows a time-space dataset to be decomposed in normalized
spatial patterns coupled to a magnitude varying in time. Each of these so called ’modes’,
are orthogonal and are usually sorted according to their relative importance. In the frame-
work of this thesis, PCA is used to parameterize the steric sea level variations and water
variations from a hydrological model by a restricted set of dominant modes.

Mathematically, PCA can be derived from the Singular Value Decomposition (SVD) of a
given (signal) covariance matrix Σ

Σ = XTX = UΛUT. (D.1)

Here X is the n x p data matrix, containing p points (e.g. grid points) and n epochs. The
columns of X must have a zero mean, which is equivalent to subtracting the time mean of
the data per spatial node. Since the matrix Σ is symmetric it can be decomposed by the
spectral decomposition theorem. This yields eigenvectors contained in the columns of ma-
trix U and eigenvalues contained in the diagonal matrix Λ. In practice, it is also possible to
compute the SVD of the data matrix X and derive the matrices U and Λ from that.

Since the ortho-normality of U implies UUT = I, one can write for X:

X = XUUT = AUT (analysis), (D.2)
with A ≡ XU (synthesis). (D.3)

The columns of matrix, U, are time independent and contain the spatial modes of the
data. These are sorted according to their relative importance or equivalently their eigen-
values. A useful quantity are the eigenvalues divided by the trace of Λ:

ri =
Λi,i

trace{Λ}100%. (D.4)

Where ri denotes the the percentage of variance explained by mode i.
The time variation of each mode, the principal components, can be obtained from the

columns of matrix A, which essentially is a transformation of the data onto the spatial
modes (the synthesis).

By choosing only the first N modes with the largest eigenvalues, the data matrix X may
be approximated (the analysis) by:

X ≈ ÃŨT. (D.5)

Where the tilde denotes the reduction of the column space to only the first N modes.
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Glossary

Cnm Fully normalized Stokes coefficients [-] 15
GX Green’s function of surface loading functional X (N, U

or V)
20

G Gravitational constant [m3kg−1s−2] 15
H Continental surface load [m of water] 34
M Mass of the Earth [kg] 15
N Geoid height [m] 15
Pnm Associated Legendre function of degree n and order m 15
Pn Legendre Polynomial of degree n 16
S Salinity of sea water [-] 44
S Relative sea level [m of water] 34
Tnm Spherical harmonic surface loading coefficients [-] 17
T Temperature of sea water [K] 44
T Total surface load [m of water] 31, 34
U Radial deformation of the Earth[m] 17
V Tangential deformation of the Earth’s surface [m] 17
∆M0 OBP model mass correction [m] 60
Λ Centrifugal potential [m2s−2] 15
ΩE Rotational speed of the Earth [rad s−1] 15
αA→B Isomorphic frame transformation parameter 28
Ȳnm 4π normalized spherical harmonic base function of de-

gree n and order m
15

δJi3 Residual changes of the moments of intertia of the
Earth

38

γ Mean gravitational acceleration of the normal ellipsoid
[m2s−2]

15

λ Longitude angle 16
φ Gravitational potential [m2s−2] 14, 15
ρe Mean density of the Earth [kgm−3] 17
ρice Mean density of ice [kgm−3] 41
ρw Mean density of (sea) water [kgm−3] 17
ρ Density of sea water [-] 43
σ0 Chandler frequency 39
σ Surface density of a load in a thin shell [kgm−2] 16
D Surface deformation vector field 18
I∗ Ice thickness [m] 41
J Mass inertia tensor of the Earth 38
O Product to sum matrix of the ocean function 36
Q Inertia tensor of a tectonic plate 33
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Glossary

V Horizontal surface deformation vector field 21
h Vectorized spherical harmonic coefficients of H [m of

water]
64

mL Moment vector of the surface load 25
o Vectorized spherical harmonic coefficients of O 36
s Vectorized spherical harmonic coefficients of S [m of

water]
36

t Vectorized spherical harmonic coefficients of T [-] 64
θ Co-latitude angle 16
S̃ Quasi-spectral relative sea level [m of water] 36
Ũ Normal potential of the reference ellipsoid [m] 15
s̃ Vectorized spherical harmonic coefficients of S̃ [m of

water]
36

a Mean Earth radius [m] 15, 17
g Mean gravitational acceleration of the Earth [m2s−2] 18
h′n Radial deformation Love number of degree n for a sur-

face load
20

h2 Radial deformation Love number of degree 2 for a
tidal load

40

hmssh Mean sea surface height [m] 47
hssh Sea surface height [m] 47
hsteric Steric sea level height [m] 43
k′n Geoid change Love number of degree n for a surface

load
20

k2 Geoid change Love number of degree 2 for a tidal load 40
l′n Lateral deformation Love number of degree n for a

surface load
20

mi Polar motion components [-] 38

AO Arctic Oscillation 111
ARGO Global array of drifting floats measuring temperature

and salinity profiles
11, 75,
128

AWI Alfred Wegener Institute 52

BPR Bottom Pressure Recorder 52, 105

CE Center of mass of the solid Earth 25
CF Center of surface figure 23, 59,

78, 125
CM Center of mass of the Earth system 23, 54,

59, 78,
125

CN Center of Network 24, 59
CODE Center for Orbit Determination in Europe 54
CTD Conductivity Temperature Depth 11
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Glossary

DORIS Doppler Orbitography and Radiopositioning Inte-
grated by Satellite

9

ECCO Estimation of the Circulation and Climate of the Ocean 9
ECMWF European Centre for Medium-Range Weather Fore-

casts
50

ENSO El Niño Southern Oscillation 111, 128
EOF Empirical Orthogonal Function analysis (synonym for

PCA)
73, 112,
D.168

EOP Earth Orientation Parameters 5, 55

FESOM Finite Element Sea-Ice Model 5, 50

GAC Ocean and atmosphere background de-aliasing mod-
els used in the standard GRACE processing

50

GFZ Helmholtz-Zentrum Potsdam - Deutsches Geo-
ForschungsZentrum GFZ

7

GIA Glacial Isostatic Adjustment 7, 9, 70,
77, 127

GLIMS Global Land Ice Measurements from Space 71
GNSS Global Navigation Satellite System 4
GPS Global Positioning Satellite System 4, 53
GRACE Gravity Recovery and Climate Experiment 4
GSL Geocentric Sea Level 113

IB Inverted Barometer response 48
ICEsat Ice, Cloud, and land Elevation Satellite 115
IERS International Earth Rotation and reference systems

Service
54

IGS International GNSS Service 55
InSAR Interferometric Synthetic Aperture Radar 12
ITRF International Terrestrial Reference Frame 94

LSDM Land Surface Discharge Model 50

NCEP National Centers for Environmental Prediction 50
NEQ Normal EQuation system 5, C.162

OBP Ocean Bottom Pressure 5, 9, 59
OMCT Ocean Model for Circulation and Tides 76

PCA Principal Component Analysis (synonym for EOF) 6, 73,
D.168

PDO Pacific Decadal Oscillation 111
PREM Preliminary Reference Earth Model 19
PSMSL Permanent Service for Mean Sea Level 13
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Glossary

RSL Relative Sea Level 113

SLR Satellite Laser Ranging 9
SNR Signal to Noise Ratio 105
SNREI Spherically-symmetric Non-Rotating Elastic Isotropic 4, 17

TWS Total Water Storage 6

UT1 Universal time [s] 54, 55

VCE Variance Component Estimation 5, 60,
C.166

VLBI Very Long Baseline Interferometry 54

WGHM WaterGAP Global Hydrology Model 76, 123
WGI World Glacier Inventory 71

XBT eXpendable BathyThermograph 11
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