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Abstract We investigated two ’gap-filler’ methods based on GPS-derived low
degree surface loading variations (GPS-I and GPS-C), and a more simple method
(REF-S) which extends a seasonal harmonic variation into the expected GRACE
mission gap. We simulated two mission gaps in a reference solution (REF), which
is derived from a joint inversion of GRACE (RL05) data, GPS-derived surface
loading and simulated ocean bottom pressure. The GPS-I and GPS-C methods
both have a new type of constraint applied to mitigate the lack of GPS station
network coverage over the ocean. To obtain the GPS-C solution, the GPS-I method
is adjusted such that it fits the reference solution better in a 1.5 year overlapping
period outside of the gap.

As can be expected, the GPS-I & GPS-C solutions contain larger errors com-
pared to the reference solution, which is heavily constrained by GRACE. Within
the simulated gaps, the GPS-C solution generally fits the reference solution bet-
ter compared to the GPS-I method, both in terms of spherical harmonic loading
coefficients and in terms of selected basin-averaged hydrological mass variations.
Depending on the basin, the rms-error of the water storage variations (scaled for
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leakage effects), range between 1.6 cm (Yukon) and 15.3 cm (Orinoco). In terms of
noise level, the seasonal gap-filler method (REF-S) even outperforms the GPS-I
and GPS-C methods, which are still affected by spatial aliasing problems. How-
ever, it must be noted, that the REF-S method cannot be used beyond the study
of simple harmonic seasonal variations.

Keywords Surface loading · GPS · GRACE · Basin averages · Mission gap

1 Introduction

The twin-satellite, NASA/DLR Gravity Recovery and Climate Experiment (GRACE)
mission has changed the way we perceive the ongoing redistribution of mass within
the Earth system. GRACE measures tiny changes in distance between two space-
craft resulting from static and time-variable irregularities of the Earth’s gravity
field. Its data products, usually provided in form of monthly spherical harmonic
models of the gravity field, have enabled scientists to quantify cryospheric ice mass
loss (Rignot et al 2011), ocean mass change (Chambers and Schröter 2011), or vari-
ability in terrestrial water storage (Tapley et al 2004; Schmidt et al 2008). More
recently, GRACE data is increasingly used in assimilation schemes of ocean and
hydrological models (Köhl et al 2012; Zaitchik et al 2008; Eicker et al 2014).

A follow-on mission for GRACE (GRACE-FO) is well on its way, with a
launch date anticipated for August 2017 (Flechtner et al 2013). GRACE-FO will
be equipped with a GRACE-heritage K-band ranging system but will carry, in
addition, a Laser Ranging Interferometer (LRI, Sheard et al 2012). It is thus ex-
pected that GRACE-FO derived gravity field models will be at least as precise as
GRACE-derived models, while, when the LRI is enabled, models with improved
spatial and temporal resolution may be obtained (Flechtner et al 2013). However,
the GRACE spacecraft are currently operating beyond their design lifetime of five
years and signs of the ageing power system become apparent. Already since the
beginning of 2011, once in 161 days (when the orbital plane is directed towards the
Sun), three to four weeks of power saving mode must be scheduled which results
in a loss of accelerometer and/or K-band ranging data. Although careful planning
of the mission operation team minimizes the amount and length of the data gaps,
a loss of data cannot be avoided without imposing unacceptable risk. Thus, de-
pending on the GRACE lifetime and the actual GRACE-FO launch, there may be
a gap of a year or longer between both missions.

The question whether we can find some way to ’bridge’ either short gaps (of
about several months) in GRACE mass change time series, or a longer, possibly
multi-year gap occuring between GRACE and GRACE-FO, using measured geode-
tic data, is thus of immediate concern. Obviously, there is no silver bullet when
one aims at substituting the micrometer-precise GRACE ranging measurements
by any other space-geodetic technique. Any alternative approach will inevitably
result in a serious loss in spatial and/or temporal resolution, when compared to
GRACE. Its use in science applications may be limited and it needs to be inves-
tigated on a case-by-case basis. Notwithstanding this caveat, several approaches
have been suggested in order to substitute GRACE results for continuing ice loss,
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ocean mass and sea level separation, and large-scale hydrologic storage time series.
These approaches include:

– combining satellite laser ranging (SLR) results, which provide the time variabil-
ity of the very low-degree gravity harmonics for some 30 years now, with pre-
defined mass change pattern whose derivation most probably involves analysing
GRACE time series (e.g. GRACE-derived empirical orthogonal functions, Pilin-
ski and Nerem 2011).

– using absolute and relative GNSS tracking to and between low-flying orbiters
equipped with accelerometers, like the SWARM satellite constellation, in order
to derive the low-degree time variable field up to degree 6 or so (Wang et al
2012); using GNSS tracking on GRACE A and/or B once the K-band ranging
system would no longer being operational is along the same line of reasoning.

– using the technique known as loading inversion, where GNSS-measured, global
network deformations are inverted into low-degree load distribution, possibly
together with complementary information (Blewitt et al 2001).

In this contribution, we will focus on the last option. In this sense, our study ex-
tends previous work (Kusche and Schrama 2005; Wu et al 2006; Rietbroek et al
2009, 2012b) on combining GRACE and the loading inversion approach.

The surface loading inversion approach has been pioneered by Blewitt et al
(2001); Wu et al (2006). It is based on the observation that redistributing mass
near the Earth’s surface does not only cause time variability in the gravity field,
but also deforms the crust to an extent visible in large-scale permanent GNSS net-
works. When non-loading effects can be carefully reduced, this deformation may be
inverted into spherical harmonics of surface mass. While early studies had focused
on the retrieval of degree-1 loading, which remains unobserved by GRACE, more
recent work has been devoted to reconciling differences between GRACE- derived
mass redistribution at higher resolution and network-derived deformations. Re-
sults by Collilieux et al (2011); Rietbroek et al (2012b), demonstrate the impact
of using reprocessed GPS observations, owing to improvements in GPS radiation
pressure modelling, phase center modelling, and the consideration of higher-order
ionospheric terms.

Here, we adapt the inversion scheme of Rietbroek et al (2009, 2012b). Surface
loading variations are parameterized through a spherical harmonic expansion up
to maximum degree and order 30, and are estimated in a weighted least squares
approach involving GPS solutions from a recent reprocessing project provided by
the TU Dresden, GRACE normal equations from GFZ, and simulated ocean bot-
tom pressure derived from AWI’s Finite-Element Sea-Ice Ocean Model (FESOM).
The data characteristic are elaborated upon in Sec. 2. The resulting normal equa-
tion systems are processed in weekly batches, which are aligned to the GPS weeks.
The results in this paper are additionally smoothed by rigorously stacking 5 weekly
systems, in a running mean sense.

In order to investigate the potential impact of a mission gap, we proceed as
follows. The results from the joint inversion are used as a reference dataset, against
which the gap-filler solutions can be tested. We then simulate two data gaps within
the reference solution, and additionally construct three types of gap-filler solutions.



4 Roelof Rietbroek et al.

The first gap-filler solution (GPS-I) is constructed by inverting the GPS data,
which is additionally constrained over the ocean by a new type of regularization
(described in Sec. 3.2). Alternatively, we compute a constrained GPS solution
(GPS-C) which is additionally adjusted by applying correction parameters to the
GPS data. These correction parameters (biases, trend and a seasonal harmonic)
are estimated by adjusting the GPS network solution to the reference solution
in an overlapping period outside the gap. For comparison, we also construct a
third gap-filler solution by simply using a seasonal fit obtained from the refer-
ence solution (REF-S). For consistency, the data flowing in this fit originate from
the same overlapping intervals as used above. Due to the limited coverage of the
GPS stations we limit the maximum truncation degree of the spherical harmonic
coefficients of the gap-filler solutions to 10.

2 Data

2.1 GPS Network Deformations

Data from a global network of 316 GPS stations are assembled into weekly un-
constrained normal equation systems. A long term secular station position model
(coordinates and velocities) has been estimated and is consequently removed a
priori. In the same procedure, station discontinuities have been estimated and
removed as well. In addition to our previous work, a priori surface loading has
been accounted for by removing the same high frequency ocean and atmospheric
dealiasing product, which is used in the GRACE processing. Although the effect
is small, the station deformations associated with the ocean pole tide (Desai 2002)
have been removed, such that the GPS systems are consistent with the GRACE
processing. For consistency, and to mitigate the orientation rank defect of the
unsolved GPS systems, the earth orientation parameters are fixed to values as
used in the GRACE processing. Furthermore, the precise orbit determination of
the GPS-satellites depend on arcs which are made as long as possible (reaching
up to 7 days). The orbit parameters are reduced from the normal equation sys-
tems, which means that the parameters are implicitly solved but not part of the
explicit parameter space anymore (e.g. Kusche 2003). Additional GPS processing
standards, such as tidal corrections, higher-order ionospheric effects, and solar ra-
diation pressure corrections, conform the description of Steigenberger et al (2006)
and Fritsche et al (2005).

In a screening process, data from 12 stations, having less than a year’s worth
of data, have been excluded from all inversions.

The GPS satellites orbit the center of mass of the Earth system (CM), whereas
the origin of the GPS station network (CN) approximates the center of surface
figure (CF). This makes the GPS observation system sensitive to variations in the
offset of the CM from the CN (see for example Wu et al 2012). In the normal
equation systems, the station coordinates are expressed relative to the center of
mass of the Earth system. We use the CM as the reference origin as it is a natural
choice for space-borne observation systems. Furthermore, the CM itself is inde-
pendent of the network geometry of the GPS stations, which may fluctuate over
time.
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2.2 GRACE Gravimetry

In this study, we use the GFZ GRACE data processed according to the release 05
processing standards (Dahle et al 2013). Similar to the GPS deformations, the data
is provided in the form of weekly normal equation systems. This allows us to fully
exploit the error-covariance information, and the solving step can be postponed
until all data have been combined. In contrast to our earlier work, the errors have
not been calibrated by a degree-wise factor, but a global weight is computed using
Variance Component Estimation (VCE, see Sec. 3.1).

2.3 Simulated Ocean Bottom Pressure

Simulated ocean bottom pressure is computed by the Finite Element Sea-Ice Model
(FESOM, Timmermann et al 2009). The model is based on the primitive equations
and is forced by ECWMF fields (e.g. wind stress and pressure). Compared to the
results of Rietbroek et al (2012b) a new heterogeneous horizontal discretization is
implemented on a finite element mesh which varies significantly in size from 20 km
(coastal regions/equator) to 150 km (open ocean).
When combining the ocean model data with geodetic observations, an estimate of
the model’s error-covariance is required. We obtain the error from the difference
between two model runs, forced with different atmospheric datasets (ECMWF
versus NCEP). From the time varying difference we first compute the median per
finite element node. The absolute value of this median value is then taken as its
representative error and is plotted in Fig. 1 (left). Off-diagonal error-covariances
are not considered in this study. It is tempting to use these errors directly in the
inversion. However, the sheer amount of nodes in regions with a finely resolved
mesh would result in a grossly overweighted model in the joint inversion. For that
reason, we also reweight the model error by its cluster area (this amounts to one-
third of the surrounding triangle areas). In summary, the adopted error for each
node, σPi, is computed from the difference of the model runs, ∆Pi, as follows:

σPi =

√
Amed
Ai

med (|∆Pi(t0 · · · tn)|) (1)

FESOM median errorFESOM median error FESOM median error (area weighted)FESOM median error (area weighted)

0.50 0.75 1.00 1.25 1.50 1.75 2.00
cm

Fig. 1 Left: Median error (absolute value) of the FESOM model. Right: Area weighted median
error (absolute value).
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As can be seen, the cluster area, Ai is normalized by the median cluster area of
the model Amed, which amounts to 1990 km2. The area-weighted error is plotted
in Fig. 1 (right).

3 Surface Loading Retrieval

The three observables: ocean bottom pressure, potential changes and station de-
formations, can all be linearly linked to the unknown surface load. The observation
equations have been extensively described in Rietbroek et al (2012b), but we re-
peat them here for completeness.
Firstly, the quantity of interest, T (θ, λ), expressed in an equivalent water height
loading the Earth’s surface, is written as a truncated expansion of spherical har-
monic coefficients, Tnm:

T (θ, λ) = a
N∑
n=0

n∑
n=−m

TnmȲnm(θ, λ) (2)

Where a denotes the mean Earth radius, and Ȳnm are the 4π normalized (real)
spherical harmonic base functions.

The relation between the (residual) Stokes coefficients, δΦnm, from GRACE
and the surface load are can be written as (see for example Wahr et al 1998):

δΦnm =
3ρw(1 + k′n)

ρe(2n+ 1)
Tnm + εΦ, n ≥ 1 (3)

Here, the density of water and the mean density of the Earth are denoted by
ρw and ρe respectively. The load Love numbers, indicated by the symbol k′n are
derived from the PREM model (Dziewonski 1981). The error of the Stokes coeffi-
cients is denoted by, εΦ. The potential field of GRACE is described relative to the
center of mass of the Earth system (CM). This implies that the terms with the

degree 1 load Love number obey (1 + k
′CM
1 ) = 0 (Blewitt 2003). Consequently,

the inverse problem exhibits a rank defect for the degree 1 coefficients.

The degree 1 loading coefficients can be estimated when GPS station deforma-
tions are augmented in the joint inversion. Surface loading induced deformation
at the ith station can be written as (e.g. Kusche and Schrama 2005):

δhδe
δn


i

=
3agρw
ρe

N∑
n=1

n∑
m=−n

1

2n+ 1


h

′

nȲnm(θi, λi)
l
′
n∂Ȳnm(θi,λi))

sin θ∂λ
−l

′
n∂Ȳnm(θi,λi))

∂θ

Tnm +

εhεe
εn

 (4)

Here the local deformation is provided in the height, east and northward direc-
tion. The h′n and l′n load Love numbers convolve the surface load to the upward
and lateral direction respectively. Since the GPS deformation is provided in the
CM frame of the Earth we must use degree 1 load Love numbers which are trans-
formed in this frame h

′CM
1 = h

′CX
1 −1−k

′CX
1 , and l

′CM
1 = l

′CX
1 −1−k

′CX
1 . Here

’CX’ may indicate any of the isomorphic frames as described by Blewitt (2003).



Bridging a GRACE mission gap 7

In contrast to the GRACE observation equation, there is no rank defect for the
degree 1 surface loading coefficients since h

′CM
1 ≈ −1.3 and l

′CM
1 ≈ −0.9 are

non-zero. Furthermore, since these load Love numbers are not unity, there exists a
degree 1 deformation which differs significantly from a pure translation. We exploit
this fact by simultaneously fitting a 7 parameter Helmert transformation in the
joint inversion every week. In that way, the degree 1 surface loading is estimated
from the GPS network deformation, while the translation parameters are allowed
to absorb residual nuisance signal related to the GPS processing (see also Riet-
broek et al 2012b; Collilieux et al 2011). We do not simultaneously estimate the
Helmert parameters in the GPS-only inversions as in those cases too much signal
is absorbed by the Helmert parameters.

The ocean bottom pressure changes derived from virtually all ocean models,
reflect the mass induced differences from an ocean at rest. However, time varia-
tions of the geoid also induce changes in the ocean bottom pressure, which are
not captured by most of the models. The simulated OBP changes, expressed in
equivalent water height, can therefore be represented as the sea surface height
(ignoring steric effects) relative to the time-variable geoid height as caused by the
same surface load:

δP (θ, λ) = ∆M0 + a
N∑
n=1

n∑
m=−n

(
1− 3ρw(1 + k

′

n)

ρe(2n+ 1)

)
Ȳnm(θ, λ)Tnm + εP (5)

The mass-correction parameter, ∆M0, is constant over the ocean and is estimated
every week in order to make the ocean model mass consistent with the estimated
surface load.

3.1 Joint Inversion Scheme

We use the combination of GRACE, GPS and FESOM data as a reference so-
lution. The proposed scheme differs in the following aspects from those used in
Rietbroek et al (2009) and Rietbroek et al (2012b). Firstly, we use updated data,
GRACE release 05 data, FESOM ocean bottom pressure from a more refined
model setup, and GPS data with an improved processing and including a larger
number of stations. Secondly, Rietbroek et al (2012b) loosely constrained station
coordinates before transforming the normal equation systems in terms of surface
loading coefficients and Helmert parameters. In this study, we fix the Earth orien-
tation parameters for GPS to those used in the GRACE solution, and no additional
coordinate constraints are applied before the transformation step. This actually
increases the noise somewhat but we obtain a more consistent solution in terms of
its reference frame. Thirdly, the weighting of the three different data types is now
obtained from a variance component estimation (e.g. Koch and Kusche 2002). The
square root of the estimated variance components varying over time is shown in
Fig. 2. It is interesting to note that the variance component of FESOM shows an
annual behavior, which suggest that the seasonal behavior may be somewhat over-
or underestimated. Although we use a diagonal error-covariance for the FESOM
data, we expect that significant error-covariances may be present. Such covariances
would decrease the relative weight of the model in the inversion. To partially com-
pensate for this effect, and to increase the relative weight of the true observations,
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Fig. 2 Time varying behavior of the estimated variance components in the joint inversion.
The factors represent the scaling of the formal errors of each data source.

we additionally rescale the FESOM error by a factor 5 after the optimal VCE
factors have been obtained. A comparison of bottom pressure changes from the
inversion with data from independent ocean bottom pressure recorders confirms
that indeed a better correlation is obtained when rescaling the FESOM errors.

3.2 Regularization of the GPS Solution

In this paper, a special focus lies on the ability of GPS-network inversions to fill
up a possible mission gap. An inversion for surface loading using Eq. 4 is possi-
ble for relatively low degrees. Here we choose a maximum truncation degree of
10, for the GPS-network solutions. An unconstrained solution poses no problem
numerically, but the solution exhibits spurious oscillations in regions where there
are few or no GPS stations (see Fig. 4). Blewitt and Clarke (2003) tackled this
problem by forcing the solution in the ocean domain to a self-consistent sea level.
This is an equipotential surface which is mass consistent with the terrestrial load.
Alternatively, Kusche and Schrama (2005) applied a constraint which regularized
the solution over the ocean towards zero.

Here, we propose a regularization technique which makes a compromize be-
tween the two methods. Instead of strictly enforcing an equipotential surface, we
regularize the solution in the ocean domain towards it. The strength of the reg-
ularization can be tuned and therefore allows more flexibility when solving the
systems. Physically, the regularization procedure may be interpreted as allowing
the solution over the ocean to contain some dynamic topography.

When ignoring steric effects, the dynamic ocean topography, ∆Toce can be seen
as the difference of the dynamic ocean surface (i.e. T (θ, λ) and a time-variable
equipotential sea surface S̃.

∆Toce(θ, λ) = O(θ, λ)
(
T (θ, λ)− S̃(θ, λ)

)
(6)

The difference on the right hand side is evaluated only in the ocean domain by
multiplying it by the ocean function O(θ, λ).
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In the following discussion, it is convenient to stack the spherical harmonic

coefficients in row vectors (i.e. t =
[
T00 · · ·TNN

]T
). In the spectral domain, Eq. 6

can be written in matrix form (Rietbroek et al 2012a):

∆toce = O (t− s̃) (7)

The matrix O operator and its complement I −O map a spherical harmonic set
of coefficients to the ocean or land domain respectively. The eigenvectors of the
matrix are typically used in spatio-spectral concentration problems (Simons et al
2006). The self-consistent sea level, contained in s̃, is by itself induced by changes
in the land surface load, tland. It is computed by solving the sea level equation
(going back as early as Woodward 1888), which can be written as a linear operator
as well (Dahlen 1976; Rietbroek et al 2012a):

s̃ = GSLEtland = GSLE (I−O) t (8)

The matrix GSLE can be obtained by solving:

(P−GN−UO) GSLE = GN−U (9)

Where P = diag
[
0 1 · · · 1

]
is a unit diagonal matrix with the degree zero entry set

to 0. The diagonal matrix GN−U is dependent on the load Love numbers and maps
a surface load to the difference between the geoid (N) and the bottom deformation
(U):

GN−U = diag
[
1 ρw
ρe

(
1 + k

′

1 − h
′

1

)
· · · 3ρw

(2n+1)ρe

(
1 + k

′

n − h
′

n

)]
(10)

The degree 0 values of the matrices are explicitly set to P(1, 1) = 0 and GN−U (1, 1) =
1, which ensures that mass is conserved globally. The choice of the frame origin
of the degree 1 load Love numbers is irrelevant as the combination (1 + k

′

n − h
′

n)
is independent of the reference system (Blewitt 2003). Substituting Eq. 8 in Eq. 7
yields:

∆toce = O (I−GSLE (I−O)) t = Ft (11)

Eq. 11, can be viewed as a pseudo observation equation; adding a priori knowledge.
Setting the expected value, E{∆t} = 0, and chosing a covariance matrix, C∆t,
we can construct a regularization term expressed in terms of the unknown surface
loading coefficients:

Ψoce = αFTC−1
∆tF (12)

Here, α, is an optional regularization parameter, with which one can tune the
strength of the regularization. We approximate C∆t by first constructing an ex-
pected residual signal, consisting of output from the WaterGAP Global Hydrology
Model (Döll et al 2003) which is augmented by the difference between the release
04 and release 05 dealiasing product. This residual is consequently mapped to the
ocean domain using the O operator. As depicted by the signal degree variances in
Fig. 3, this mapping operation removes a significant part of the simulated signal
(i.e. the land component). A constant diagonal covariance matrix is then con-
structed by taking the RMS over the time domain 2002-2007, for each spherical
harmonic coefficient. A regularization parameter, α = 100, is additionally applied
in order to obtain realistic surface loading results from a GPS inversion. This is
shown exemplary for GPS week 1400 (5-11 Nov 2006), for which the GPS-I solu-
tion is shown in Fig. 4, and the associated degree variances are also plotted in Fig.
3.
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Fig. 3 Degree variance (averaged per coefficient) of a residual signal consisting of WGHM
model data and the difference of the weekly RL04 and RL05 GAC products. The shaded
area spans the variations over the time period from 2002-2007. The thicker lines denote the
corresponding RMS. The lowering of curves is caused by the ocean operator O, which removes
a significant amount of signal. Signal degree variances of the GPS-I solution for GPS week
1400 are shown in orange.

No ConstraintsNo Constraints with Ocean Constraintswith Ocean Constraints

−15 −10 −5 0 5 10 15

cm

Fig. 4 Left: Unconstrained GPS solution up to degree and order 10, for the GPS week 1400
(5-11 Nov. 2006). Right: GPS solution where oceanic constraints are applied (GPS-I). GPS
stations are indicated by black circles.

4 Filling GRACE Mission Gaps

We propose three methods to fill GRACE mission gaps. For the first method
(GPS-I) no data outside the gap is needed. We perform a GPS inversion with the
constraint from Sec. 3.2. This way, surface loading coefficients up to degree 10
are obtained. A temporal smoothing is applied by stacking 5 subsequent weekly
normal equation systems in a running mean sense.

Unfortunately, the heterogeous coverage of the GPS network is very sensitive
to spatial aliasing. The necessity to constrain the solution over the ocean is obvious
from Fig. 4. However, even over land regions with a sparse station coverage, the
signal may be either damped (when no stations exist in the region of maximum
signal) or falsely amplified (when isolated stations are affected by strong local
signals). The interplay often also results in a spatial shift of the maxima. Most
of the loading signal shows a strong seasonal behavior, such that changes in the
magnitude and phase are expected in regions with few GPS stations. The second
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gap-filler method (GPS-C) tries to correct for these effect by applying correction
parameters to the GPS-I solutions based on an overlapping period before (and
optionally after) the mission gap. For this means, each surface loading coefficient
in the GPS normal equation, with the regularization already applied, is expanded
with a set of correction parameters consisting of a polynomial and an annual
sinusoid:

TGPSnm (t) = T ∗GPSnm (t) +
p∑
i=0

T (i)
nm(t− t0)i + T cnm cos(Ωt) + T snm sin(Ωt) (13)

Obviously, this introduces additional rank defects in the weekly normal equation
system. However, the correction parameters are not intended to be solved on the
weekly level but are constrained by data from a longer overlapping period at the
side(s) of the mission gap where both GRACE and GPS data exists. In the over-
lapping period, the coefficients T ∗GPSnm (t), are fixed to the values as obtained from
the reference solution and the correction parameters may be consequently esti-
mated. Within the mission gap, the estimated correction parameters, which are
independent on data in the gap itself, are now fixed to those as obtained above
but the coefficients, T ∗GPSnm (t) are now estimated every week.

In this study, we simulate two GRACE mission gaps. The first gap is the cal-
endar year 2006. The overlapping period is chosen to be 3/4 year long at both
sides of the gap. For this overlapping period, a polynomial up to degree 1 (bias
and trend) is estimated as well as the annual cosine and sine amplitudes.

The second gap is about 1.5 year wide (centered at March 2010) but the cor-
rection parameters are estimated only from data before the mission gap (1.5 year
overlapping period). For this gap, a bias and an annual sinusoid are estimated as
nuisance parameters.

Due to the applied corrections, the seasonal behavior of the GPS-C gap-filler
method is essentially determined by the reference solution itself. For comparison,
we also construct a third gap-filler method (REF-S) which simply consists of a
seasonal fit (and the same polynomial as in the nuisance parameters) to the coef-
ficients of the joint inversion.

The chosen overlapping periods are kept relatively short to test whether a
minimal amount of data suffice to make a gap-filler solution. Longer overlapping
periods are also possible but are left out of the discussion.

5 Results

5.1 Surface Loading Coefficients

To assess the performance of the gap-filler methods, we compute approximate
signal-to-noise ratios in the simulated mission gaps:

SNRnm =

∑
ti∈gap

(
TREFnm (ti)

)2

∑
ti∈gap

(
TREFnm (ti)− T gapfillernm (ti)

)2 (14)
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Fig. 5 Coefficient-wise signal to noise ratios of the three gap-filler methods (from left to right
GPS-I, GPS-C and REF-S). The top and bottom row reflect the double sided and single sided
gap respectively. SNR values below 0.8 are plotted in gray.

Where the signal is taken as that as obtained from the joint inversion, and the error
is approximated as the difference between the reference and the gap-filler solution.
If the gap-filler method performs well, SNRnm is larger than 1. We plotted in Fig.
5 the signal-to-noise ratios for each of the two simulated gaps, and for all three
gap-filler methods.

The uncorrected GPS-I inversion (left column of Fig. 5) shows a limited capa-
bility to reproduce the combination solution. Most of the surface loading coeffi-
cients have a noise level which is comparable or larger than that of the signal itself.
The situation is improved for the GPS-C solution when correction parameters are
applied (center column). The highest signal-to-noise ratios are in fact obtained
by just filling the gap with a seasonal curve from the reference solution (REF-S).
This suggests that, in terms of surface loading coefficients, the noise level of the
(sub-annual) signal in the GPS-C solutions is larger than the difference between
the signal and the seasonal gap-filler method.

The time variation of a selection of surface loading coefficients are plotted
in Fig. 6. It is clear that for some coefficients, the uncorrected GPS-I solution
(orange curve) wanders off from the combination solution. This is mostly the
result of the spatial aliasing of the signal into the GPS solution. This effect has
been the motivation to estimate and remove a correction curve from the data
in an overlapping interval (shaded in lightgray). The corrected curves (in green),
follow the coefficients from the combination solution more closely, although the
significant differences can still be seen.

5.2 Selected Hydrological Basin Averages

Spherical harmonic coefficients of surface loading represent global averaged values.
Since the GPS station network is very heterogeneous, it can be expected that the
performance of a GPS-only solution is spatially dependent. We therefore compare
the gap-filler methods in terms of basin averages for a variety of basins.
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Fig. 6 Time variation of selected surface loading coefficients (combination and gap-filler solu-
tions) expressed in equivalent water height (eqh). The simulated gaps and their corresponding
overlapping periods are indicated by the dark and light shaded regions respectively.

In the spectral domain, the average surface load in a basin can be computed
as (Wahr et al 1998):

h̃ϑ =
fϑ
ϑ00

N∑
n=0

m∑
n=−m

ϑnmwnTnm (15)

Here, the spherical harmonic coefficients of the basin are denoted by ϑnm. Option-
ally, a set of filter coefficients, wn, can be applied to reduce high frequency noise.
We use here a 200 km Gaussian filter (Jekeli 1981), but this has only a minor effect
for the truncation N = 10 we use.

Since the truncation degree is very low, the basin estimates are strongly influ-
enced by leakage effects. These attenuate (leakage-out) or contaminate (leakage-in)
the estimated signal of interest. To compensate for these effects, a scale factor, fϑ,
is commonly applied (Velicogna and Wahr 2006; Fenoglio-Marc et al 2012; Baur
et al 2009). Unfortunately, there is no unique way to compute this factor and
several methods exist. Here, we introduce a new method to compute fϑ which ac-
counts for the damping of the annual signal in hydrology. For this means, we took
the WaterGap model (Döll et al 2003) and computed the annual sine and cosine

amplitudes, T
c/s,WG
nm , in terms of surface loading coefficients. This annual signal

is then filtered/truncated and, because of the linearity of the averaging operation,
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Basin Method Gap1 Gap2 Nstat
fϑ (∆ta[doy]) RMS ∆RMS RMS ∆RMS
Amazon GPS-I 11.9 14.5 10.8 9.0 5
1.20 (2) GPS-C 19.9 5.7 13.3 3.5 5

REF-S 15.6 3.4 16.2 5.3 5
Orinoco GPS-I 15.7 39.8 21.4 26.8 1
3.95 (-42) GPS-C 34.7 7.1 32.6 15.3 1

REF-S 35.2 10.4 36.9 23.7 1
Parana GPS-I 6.1 2.9 5.9 4.6 9
0.90 (-9) GPS-C 7.9 4.2 5.3 4.9 9

REF-S 5.5 2.3 4.8 3.7 9
Zambezi GPS-I 5.5 5.0 3.4 6.3 1
0.98 (-2) GPS-C 8.3 2.5 7.1 2.6 1

REF-S 7.6 1.6 8.2 2.1 1
Mississippi GPS-I 3.4 3.4 5.2 3.3 6
1.15 (-7) GPS-C 3.6 2.3 8.0 6.5 6

REF-S 4.6 2.3 3.8 1.7 6
Ob GPS-I 5.3 2.8 5.7 2.9 4
0.87 (3) GPS-C 4.4 2.6 5.3 3.2 4

REF-S 4.2 1.3 3.2 1.4 4
Ganges GPS-I 10.8 4.6 12.7 7.4 0
1.51 (-9) GPS-C 9.8 4.3 10.9 5.8 0

REF-S 10.9 3.8 11.5 5.8 0
Danube GPS-I 5.4 2.3 6.1 2.5 21
1.12 (-1) GPS-C 3.8 2.1 4.3 3.0 21

REF-S 4.0 1.7 4.6 2.7 21
Yukon GPS-I 2.8 3.2 1.8 4.2 5
0.98 (3) GPS-C 5.9 1.6 3.9 2.5 5

REF-S 5.3 1.2 4.2 1.4 5

Table 1 Root mean squares of the three types of gap-filler solutions, and their residuals w.r.t.
the combination solution (REF), in terms of basin averages. The scale factor and expected
seaonal phase shift is given for each basin in the first column. All standard deviations are
scaled with fϑ. The last column, contains the amount of GPS stations found within the region
encompassing the basin and a surrounding buffer of 200 km.

a basin average can be obtained in terms of separate cosine and sine components:

h̃cϑ cos(Ωt) + h̃sϑ sin(Ωt) =

cos(Ωt)
N∑
n=0

m∑
n=−m

ϑnmwnT
c,WG
nm + sin(Ωt)

N∑
n=0

m∑
n=−m

ϑnmwnT
s,WG
nm

(16)

The attenuation factor fϑ and phase shift, ∆ta of the annual signal is derived
from comparing the unfiltered annual amplitude (N = 100 and no filter) with the
filtered basin average (N = 10 and a 200 km Gaussian filter):

fϑ =

√
h̄c2ϑ + h̄s2ϑ
h̃c2ϑ + h̃s2ϑ

, ∆ta =
1

Ω

[
arctan

(
h̃sϑ
h̃cϑ

)
− arctan

(
h̄sϑ
h̄cϑ

)]
(17)

For a variety of basins, the damping factor and the associated phase shift are
tabulated in Tab. 1. With the exception of the Orinoco basin, which is strongly
influenced by the neighbouring Amazon, most of the basins have a damping factor
that remains to within 20% of 1 and a phase shift of less than 10 days. The limited
maximum truncation degree of 10 will cause a lot of the signal to leak out of the
basin. At the same time however, we find that the leakage of signal into the basin
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is of the same order of magnitude or even larger.

The RMS of the residuals, ∆RMS, in Table 1 provide rough estimates of weekly
accuracies which are obtainable with the gap-filler methods. Since most of the hy-
drological signal follows a relatively smooth annual variation, the filling of the gap
with a seasonal curve may already provide a good approach, although in some
cases the GPS-C gap-filler solution works better (Amazon, second gap). On the
level of spherical harmonic coefficients, we have seen that the GPS-C solutions
improved virtually all of the coefficients compared to the GPS-I solution. In terms
of basin averages, this can also be concluded for most basins. However, some in
basins (first and 2nd gap of the Parana, 2nd gap of the Danube, Mississippi and
Ob), the GPS-I solution outperforms the corrected series. Among all factors, a
favourable GPS coverage in those regions may contribute to this.

The rescaled time variation of the basin averages are shown in Fig. 7. The
plots confirms most of our findings from the previous paragraph, but additionally
visualize that, during the second gap, the gap-filler solutions tend to diverge more
strongly.

6 Conclusion and Discussion

We have assessed the ability of GPS-derived surface loading to fill the expected
GRACE mission gap. As can be expected, the accuracy of the surface loading as
obtained from GPS-only inversions is significantly less than that obtained by the
GRACE mission. In terms of surface loading coefficients, we found that reduc-
ing a set of correction parameters from the GPS solutions increased the signal
to noise ratios within the simulated gaps significantly. However the more simple
seasonal gap-filler method (REF-S), where a seasonal curve is extended into the
mission gap, outperforms the GPS gap-filler methods GPS-I and GPS-C in terms
of residual RMS. This can be concluded from the time series of spherical harmonic
surface loading coefficients and from time variations of almost all hydrologic basin
averages considered. Although the REF-S gap-filler method fits the data very well,
it should be noted that its use is restricted to the study of a simple harmonic sea-
sonal variation and a trend. Although not shown here, we believe that the GPS-I
and GPS-C may still offer useful information in the study of episodic or highly
time-variable signal in dedicated regions, provided the signal is large enough and
a good GPS station coverage exists.

The estimates in many basins benefit from the removal of the correction param-
eters from the GPS solution. However, in some basins (e.g. Mississippi, Danube,
Parana) the uncorrected GPS solutions outperform the corrected ones, in par-
ticular in the second (one-sided) mission gap. The GPS-I and GPS-C solutions
perform best in the Yukon and Danube basin, which may be due to a favourable
GPS measurement geometry (i.e. densily distributed, or well placed GPS stations).
However, as mentioned before, the seasonal gap-filler method appears to be less
noisy.
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Fig. 7 Rescaled basin averages for selected hydrological basins, during the simulated mission
gaps.
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We suspect that one of the largest pitfalls of using GPS-derived surface load-
ing solutions as a gap-filler lies in the spatial aliasing problem. The most obvious
implication is the demonstrated necessity to apply a constraint over the ocean.
But even over land there remain large areas where the solution is unconstrained
by GPS stations. Unfortunately, this spatial aliasing problem is not expected to
vanish when the time resolution is lowered, since the GPS network is not changing
much over such periods. A further complication will be the retrieval of surface
loading trends from GPS network changes. In the GPS-C solution, the secular
changes are removed a priori from the stations and are then determined from the
data in the overlap interval. However, when using only GPS network data, GPS
orbit errors, and non-surface loading effects such as glacial isostatic adjustment
and plate motion complicate the retrieval of surface loading trends (see for exam-
ple Wu et al 2010).

Although limited in its use by itself, we do not doubt that the GPS network
deformations contain valuable information on surface loading phenomena. In this
line of reasoning, we see this study as a strong incentive to investigate future meth-
ods to reduce spatial aliasing. From our point of view, one of the most promising
techniques is the combination of GPS with complementary datasets such as High-
Low satellite-to-satellite tracking from for example SWARM, or with low degree
variations of the gravity field from Satellite Laser Ranging.
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