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Abstract 19 

Uncertainty in the geocenter position and its subsequent motion affects positioning estimates on 20 
the surface of the Earth and downstream products such as site velocities, particularly the vertical 21 
component. The current version of the International Terrestrial Reference Frame, ITRF2014, 22 
derives its origin as the long-term averaged center of mass as sensed by Satellite Laser Ranging 23 
(SLR), and by definition, it adopts only linear motion of the origin with uncertainty determined 24 
using a white noise process. We compare weekly SLR translations relative to the ITRF2014 25 
origin, with network translations estimated from station displacements from surface mass 26 
transport models. We find that the proportion of variance explained in SLR translations by the 27 
model-derived translations is on average less than 10%. Time-correlated noise and non-linear 28 
rates, particularly evident in the Y and Z components of the SLR translations with respect to the 29 
ITRF2014 origin, are not fully replicated by the model-derived translations. This suggests that 30 
translation-related uncertainties are underestimated when a white noise model is adopted, and 31 
that substantial systematic errors remain in the data defining the ITRF origin. When using a 32 
white noise model, we find uncertainties in the rate of SLR X, Y and Z translations of ±0.03, 33 
±0.03 and ±0.06 respectively, increasing to ±0.13, ±0.17 and ±0.33 (mm/yr, one sigma) when a 34 
PLW noise model is adopted. 35 

1 Introduction 36 

The need to monitor global change processes, such as sea-level change and postglacial 37 
rebound, at a level below 1 mm per year illustrates the requirement for an accurate and precise 38 
global geodetic reference frame. The International Terrestrial Reference Frame (ITRF) [Altamimi 39 
et al., 2016] attempts to meet accuracy and stability goals of 1 mm and 0.1 mm/yr respectively 40 
[Gross et al., 2009]. As each iteration of the ITRF provides improvements in the precision and 41 
accuracy of the global reference frame, challenges remain to meet the accuracy and stability 42 
goals. Particularly challenging is the realization of the origin (defined as the long-term averaged 43 
center of mass (CM) of the Earth), and its evolution in time [Dong et al., 2014]. Presently, this 44 
realization is limited given it is determined using measurements from a single measurement 45 
technique [Satellite Laser Ranging (SLR), Altamimi et al., 2016; Wu et al., 2011] that is known 46 
to be affected by systematic biases and network asymmetry [Appleby et al., 2016]. The 47 
ITRF2014 (and each predecessor) is a linear frame by definition, and consequently the long-term 48 
motion of its origin is described by a linear trend. Limitations arise given that when specifying 49 
the ITRF origin to coincide with the long-term origin of the SLR frame, only time-constant 50 
annual and semi-annual terms are included with a white noise model [Altamimi et al., 2007; 51 
2011; 2016; Argus, 2012], neglecting any other non-linear motions as part of the functional or 52 
stochastic model. 53 

Relative motion between the Centre of Mass of the total Earth system (CM) and the 54 
Centre of surface Figure (CF) of the solid Earth can be observed using space geodetic 55 
observations that tie Earth-fixed permanent geodetic sites and space-based satellite platforms. 56 
Both secular and seasonal geocenter motion occurs as a result of past and present mass re-57 
distribution, where geocenter motion is the difference between CM and CF (the difference 58 
between geophysically determined origins). Past mass redistribution on the surface or interior 59 
such as glacial isostatic adjustment (GIA), induces secular geocenter motion, while intra-annual, 60 
seasonal and inter-annual signals relate to present day distributions, such as exchanges within 61 
and between the ocean, atmosphere, continents and cryosphere [Argus, 2012; Dong et al., 1997; 62 
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Wu et al., 2012]. SLR translations with respect to the ITRF2014 origin therefore consist of both 63 
measurement error and a component of real geocenter motion affected by the non-homogenous 64 
network distribution of SLR tracking stations. This leads to a sampling bias known as the 65 
“network effect”, and should ideally reflect the offset between the network origin (CN) and the 66 
CM rather than the geocenter motion. 67 

An alternative approach to studying geocenter motion uses observations and numerical 68 
models of surface mass transport to derive deformation of the solid Earth at the locations of the 69 
SLR stations (that change over time), from which network translations may be estimated. The 70 
mass transport models provide bounds on the network translations which are to be expected from 71 
known surface loading processes. Any inconsistency between observed SLR translations and 72 
those derived from a surface loading model will hint at problems in either the SLR methods 73 
(observations or processing) or problems within the surface loading model. In this paper, SLR 74 
translations and output from two surface loading models are used to assess the uncertainty in the 75 
SLR translations with respect to the ITRF2014 long-term origin. 76 

2 Data  77 

The origin of ITRF2014 is defined such that there are zero translation parameters and 78 
rates at epoch 2010.0 between the International Laser Ranging Service (ILRS) long-term mean 79 
origin from SLR and ITRF2014 [Altamimi et al., 2016]. The SLR temporal translation 80 
components used here have been derived with respect to the ITRF2014 origin that has been 81 
defined using the internal constraint method described in Altamimi et al. [2007] and Altamimi et 82 
al. [2016]. The translations were estimated using a 7-parameter similarity transformation 83 
between each week and a SLR ITRF2014 network of 21 core stations. The time series of the 7-84 
parameters were adjusted globally, in one run using the CATREF software [Combination and 85 
Analysis of Terrestrial Reference Frames, e.g. Altamimi et al., 2016], with the full variance-86 
covariance information of the total SLR SINEX time series. We analyze the translations from 87 
weekly combined SLR solutions relative to the ITRF2014 (linear) origin over the time span 88 
1993.0 to 2015.0 in the temporal and spectral domains. The complete ILRS SLR reference frame 89 
solutions in SINEX format submitted for the realization of ITRF2014 covers the time span 90 
1983.0 to 2015.0. Only the data from 1993.0 onwards are used here due to noisy data in the early 91 
section of the time series, producing large formal uncertainties in the SLR translation series 92 
before the LAGEOS-2 satellite was launched in 1992 [Dong et al., 2014]. We compare the SLR 93 
translation time series with respect to the ITRF2014 long-term origin with two different 94 
estimates of network translations that are derived from independent surface mass transport 95 
models. 96 

The ITRF2014 origin is considered theoretically representative of the long-term CM, 97 
where geocentre motion is defined as motion of the CM with respect to the CF [Altamimi et al., 98 
2016]. Linear motions for ground stations are assumed, with some discontinuities and post-99 
seismic deformations enforced for sites affected by major earthquakes or equipment changes. 100 
The ITRF origin reflects CM on secular time scales due to it coinciding with the long-term 101 
average CM as observed by SLR, but on shorter (including seasonal) time scales, the ITRF 102 
origin reflects CF [Blewitt, 2003; Collilieux et al., 2009; Dong et al., 2003]. We note that some 103 
of the literature considers the opposite convention, that is, displacement of CF with respect to 104 
CM, for example Métivier et al. [2010] and Dong et al. [2014]. 105 
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Our first comparative geophysical model is from Rietbroek et al. [2015], who calculated 106 
surface mass transport loading based on a combination of GRACE and radar altimetry data using 107 
an inversion approach that applied conservation of mass to solve the sea level equation 108 
[Rietbroek et al., 2016]. Surface displacement components are provided for the time span 2002.3 109 
to 2014.5 with monthly sampling, here-on referred to as R15. R15 considers mass redistribution 110 
from the Antarctic and Greenland ice sheets, land glaciers, GIA, continental water storage, and 111 
contributions from the oceans and atmosphere. Although GRACE alone is not capable of 112 
observing degree-1 mass redistribution, combination with additional datasets and use of an 113 
inversion methodology enables derivation of surface mass transport values. The short data span 114 
is limiting given it covers only half of the SLR series, but remains useful given the independent 115 
GRACE-based approach. 116 

Our second dataset was estimated from numerical surface mass transport models and 117 
solves the sea level equation to conserve mass for the global system after taking into account 118 
self-attraction and loading effects [Gordeev et al., 1977; Frederikse et al., 2016; Tamisiea et al., 119 
2010] using fingerprints [Mitrovica et al., 2001] to represent the non-uniform redistribution of 120 
water. Here-on this modelled surface mass product is referred to as MSM. MSM yields values 121 
over the time span 1993.0 to 2015.0 with monthly sampling. This dataset includes modelled 122 
ocean and atmosphere mass redistribution (defined using the AOD1B product) [Flechtner et al., 123 
2015], continental land glaciers [Marzeion et al., 2015], Greenland [van den Broeke et al., 2016] 124 
and Antarctic ice sheet surface mass balance changes from the Regional Atmospheric Climate 125 
Model (RACMO) version 2.3 [Noël et al., 2015], Global Reservoir and Dam database (GRanD) 126 
dam water retention [Lehner et al., 2011] using the filling rate method of Chao et al. [2008] and 127 
other terrestrial water storage from the Noah Global Land Data Assimilation System (GLDAS) 128 
product [Rodell et al., 2004]. Both the land glacier and dam retention components are sampled 129 
annually and have been linearly interpolated to monthly intervals for consistency with the other 130 
datasets, constraining the temporal resolution. It would be expected for these components to 131 
contain annual signals due to the seasonal nature of hydrologic mass exchange, and we return to 132 
this in the Discussion. A groundwater component is available using data from Wada et al. 133 
[2010]. The contribution from groundwater to the overall signal is primarily linear with very 134 
small annual amplitude for the available period. Further data description for MSM is available in 135 
the Supporting Information (Text S1) and Frederikse et al. [2016], including uncertainties for the 136 
component contributions.  137 

Surface displacements from each geophysical model were derived by redistributing 138 
loaded masses within a thin shell on the Earth’s surface. They are spherically symmetric, 139 
stratified, and non-rotating Earth responses elastically redistributed over sub-secular (sub-daily 140 
to decadal) time scales. The displacements are proportional to the incremental load potential 141 
according to the load Love number theory [Farrell, 1972], and are derived from the PREM 142 
elastic Earth model [Dziewonski et al., 1981]. 143 

Following the methodology of Collilieux et al. [2009], network translations have been 144 
derived from station displacements due to loading effects from two distinct surface mass 145 
transport models and compared with SLR translations with respect to the ITRF2014 long-term 146 
origin to account for the network effect of the SLR station geometry. 147 

From each of the geophysical models, network translations are computed following the 148 
methodology of Collilieux et al. [2009], using the ITRF2014 station positions and velocities plus 149 
the modelled surface mass loading deformation at each epoch of the respective dataset. At each 150 
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epoch, we used only those SLR sites that were active. The monthly surface deformation values 151 
are interpolated from monthly to weekly values using a cubic spline. The two synthetic time 152 
series are then used to estimate transformation parameters, using Globk [Herring et al., 2015], 153 
with respect to ITRF2014 using the full covariance matrix of the ILRS combined solution 154 
submitted for ITRF2014 analysis. Following Collilieux et al. [2012], only three rotations and 155 
three translations were estimated (that is, scale was not estimated). Repeating the analysis with 156 
the scale parameter included produced only negligible changes to the estimated transformation 157 
parameters. Covariance information was used as given; an occasional site was automatically 158 
removed for a given week due to the estimated station adjustments being larger than 10-sigma. 159 
Given that the ILRS combined solution was generated using a loose constraint approach 160 
correlations exist between the Helmert parameters, some of the station displacements may leak 161 
into the rotation parameters [Collilieux et al., 2009]. Here, the rotations have a mean and 162 
standard deviation of 0.00±0.02 mas for all components from both models (one sigma), which 163 
induces station displacements below 1 mm. 164 

The two network translation models, R15 and MSM are compared with the SLR 165 
translation components with respect to the ITRF2014 origin to assess the sensitivity of the SLR 166 
observed origin against geophysically modeled geocenter motion taking into account the network 167 
effect of the SLR observing network. 168 

3 Comparison of SLR and modelled network translations 169 

 By construction, there are zero translation rates (trends) between ITRF2014 and the SLR 170 
stacked frame of weekly solutions over the time span 1993.0 to 2015.0. Annual and semi-annual 171 
periodic signals were not removed from the SLR translation components as these are signals of 172 
interest. Figure 1 (left) shows the three datasets in the temporal domain sampled at monthly 173 
epochs for clarity. The surface deformation values at each site were detrended before 174 
transformation [Collilieux et al., 2009]. Formal errors are not available for either of the surface 175 
mass transport models, but uncertainties are available for the constituent datasets that contribute 176 
to each model. Further information on the model uncertainties can be found in the associated 177 
references. Our use of two geophysical models aims to reflect, at least partly, the uncertainty in 178 
the two models. 179 

Figure 1 (right) shows the SLR translations alongside the differences of R15 and MSM 180 
with SLR, where the qualitative agreement of the curves reveal that the differences are heavily 181 
influenced by signal not in R15 and MSM. Considering the residual series, the percentage of 182 
SLR variance explained by R15 is 12.5%, 1.3% and 2.1% for the X, Y, Z components, 183 
respectively, with MSM explaining 8.1%, 4.0% and 2.0%, respectively. The small proportion of 184 
variance explained by the surface mass transport models indicates that either the geophysical 185 
models are not able to capture the surface mass transport variability and/or systematic errors 186 
from the SLR technique are substantial. The visual agreement between R15 and MSM is 187 
noteworthy given the dissimilarity in the data used to construct the series. Surface thermoelastic 188 
effects, with annual amplitudes approaching 3 mm for radial displacements and 1.5 mm for 189 
transverse displacements [Xu et al., 2017], could explain some of the difference between the 190 
SLR translations and the respective network translations. 191 
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3.1 Seasonal variation 192 

The dominant signal throughout the SLR translation series has an annual period with 193 
apparent variable amplitude. Over the full time series, the SLR translation annual signal in the Z 194 
component is approximately twice that of the SLR translation X and Y components (see Table 195 
1). The greatest agreement in overall amplitude and its temporal variation between SLR, R15 and 196 
MSM is found in the X component, which is predominantly ocean-driven due to the limited land 197 
area along the X axis (X is in the direction of 0°N 0°E, Y of 0°N, and Z of 90°N).  198 

The annual signal expressed in the residuals for each coordinate component (Figure 1d, e, 199 
f, SLR minus model) computed between the SLR origin and model based network translation 200 
estimates, demonstrate reasonable qualitative agreement in phase and amplitude, again 201 
demonstrating that both the R15 and MSM models significantly underestimate the amplitude of 202 
the annual signal within the SLR translations. To explore the strength of the annual signals more 203 
closely we computed the Power Spectral Density (PSD) using the Lomb-Scargle approach 204 
described by Press et al. [1992]. Figure 2 shows the PSD for each dataset across each coordinate 205 
component. Lower frequency trends are less well resolved by R15 due to the restricted temporal 206 
span, and care should be taken not to over-interpret differences at these frequencies. 207 

The annual signal expressed in MSM significantly underestimates the observed SLR 208 
amplitude in all components, particularly during the latter part of the Y component time series 209 
(Figure 1b) and remains visible as a peak in the residual PSD (Figure 2e). The shorter duration 210 
R15 model also underestimates the magnitude of the annual signal, where the most notable 211 
differences for both R15 and MSM are with respect to the Z component (Figure 1c). This is 212 
confirmed by the presence of a residual peak at the one cycle per year frequency in the bottom 213 
panels of Figure 2.  214 

The SLR series was compared with the MSM translations over the same time span as 215 
R15 (results not plotted here). In this analysis, the annual signal amplitude and phase of MSM 216 
were not statistically different from R15 in comparison to SLR over the shortened time span. The 217 
MSM dataset, over the R15 time span, is very similar to the SLR Y component, but has reduced 218 
agreement with the SLR X and Z components, particularly in the latter part (2002 onwards) of 219 
the time series (similarly as for R15) where the signal deviates (Figure 1). That the surface mass 220 
transport models are indistinguishable from each other in the later part of the time series provides 221 
confidence in their construction, noting again the dissimilarities in their constituent data series.  222 

The magnitude-squared coherence of the SLR time series with each of the models in 223 
Figure 3, provides further evidence that an annual signal is clearly present in both the 224 
observations from SLR and the network translation estimates from geophysical models. A strong 225 
peak in each component is centered about one cycle per year, with an average magnitude-226 
squared coherence of 0.9 across the X, Y and Z components. Figure 3a shows agreement in the X 227 
component is poor for signals other than annual, particularly between SLR and R15. Better 228 
agreement at other frequencies is evident in the Y and Z components between SLR and the 229 
network translation models. Other less significant peaks are observed at sub-annual periods, but 230 
they are not considered further here. 231 

To assess the time-variability of the time series, we follow a similar method to Argus 232 
[2012] whereby each time series is divided into four-year segments, each overlapping by one 233 
year, producing seven segments in our analysis. A linear plus seasonal model was fitted to each 234 
segment, with the amplitude for each origin component shown in Figure 4a, b, c, each centered 235 
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on the mid-point of the segment. Four years is sufficient to reliably estimate the linear plus 236 
annual and semi-annual terms [Blewitt and Lavallee 2002]. For the SLR data, a number of 237 
annual amplitudes computed from segmented data are significantly different to those computed 238 
over the full series in the Y and Z components. While natural variation in these terms is 239 
expected, some of the behavior appears systematic and specific to SLR. For example, the Y 240 
component shows a marked reduction in amplitude following the segment centered on 2003.5 241 
(Figure 4b), which is not reflected in the R15 data, and only marginally reflected in the MSM 242 
data. The largest variability in SLR annual amplitude is found in the Z component (Figure 4c), 243 
with the large deviation in the segment centered on 1997.5 not reproduced by either R15 or 244 
MSM. 245 

We also note a decrease in the uncertainty of the annual amplitude across the SLR data 246 
segments, most noticeably in the X and Z components. This perhaps reflects refinements in the 247 
SLR observing networks’ geometry and operation capacity over time [Varghese, 2013]. 248 

3.2 Noise characteristics 249 

Examination of Figure 2 shows clear features other than the dominant annual signals. The 250 
noise floor of the SLR dataset is substantially higher than that of both the network translation 251 
models, presumably associated the effect of measurement error. The SLR X component (Figure 252 
2a) shows a flatter (whiter) spectrum than in Y and Z indicating increased time-correlated noise 253 
in the latter components. The spectra of SLR-R15 and SLR-MSM (Figure 2 d, e, f) also suggests 254 
time-correlated noise across each component.  255 

To further examine the properties of the time-correlated noise, we tested various noise 256 
models for each dataset using HECTOR software [Bos et al., 2013], examining white noise-only, 257 
random walk, flicker, autoregressive moving average, autoregressive fractionally integrated 258 
moving average, Generalized Gauss Markov (GGM) or Power Law and White (PLW) models. 259 
Noise model parameters and summary statistics were estimated along with a linear rate and 260 
annual plus semi-annual periodic terms. We used both the Akaike Information Criterion [Akaike, 261 
1973] and Bayesian Information Criterion [Schwarz, 1978] to identify the preferred noise model 262 
for each time series. The characteristics of the SLR series are best fit by a GGM or PLW model, 263 
in strong preference to a white noise-only model (see Table 1). Where a white noise only model 264 
was estimated in HECTOR, our values are consistent with the time constant annual and semi-265 
annual terms of Altamimi et al. [2016]. 266 

The uncertainty in the rate of the SLR translations, estimated with a PLW noise model 267 
over the complete time span, is a factor of five larger in comparison to a white noise-only model 268 
(see Table 1). That is, white noise uncertainties for X, Y and Z rates respectively of ±0.03, ±0.03 269 
and ±0.06 increase to ±0.13, ±0.17 and ±0.33 (mm/yr) when a PLW noise model is adopted. A 270 
PLW noise model was chosen instead of GGM for the remaining analysis as a conservative 271 
estimate of rate uncertainty. We examined the apparent offset around 2010 in the SLR origin Y 272 
component (Figure 1b, e), as described by Altamimi et al. [2016], and found it to be statistically 273 
insignificant when estimated as an offset within the noise analysis. Neither of the geophysical 274 
models show an offset at this time. Together, this suggests that the apparent discontinuity is 275 
simply characteristic of power law time-correlated noise with spectral indices close to -1 (flicker 276 
noise) [Williams, 2003]. No other offsets were estimated for the datasets. 277 
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Neither of the network translations from the geophysical models capture the long period 278 
variability in the SLR series particularly well. The removal of the models from the SLR series 279 
results in generally no change to the spectral index for the PLW model in the X, Y and Z 280 
components for both MSM and R15, (see Table 1 and Table 2).  281 

3.3 Time-variable trends  282 

We next consider the multi-year trends in the SLR translation time series. By convention, 283 
the linear rate of each SLR origin translation component are not statistically different from zero 284 
[Altamimi et al., 2016] over the full time series. However, low frequency variability is evident in 285 
the SLR time series, particularly in the Y and Z components (Figure 1b, c). This signal is not 286 
present in either of the mass transport models (Figure 1, noting the same scale is used in the left 287 
and right panels). The non-linear signature observed in the temporal domain of the SLR Y 288 
component in Figure 1b is similarly reflected in Figure 2b where the Y component of the SLR 289 
origin series shows high power at low frequencies.  290 

The time-variable rate within each data series is shown in Figure 4d, e, f, for each of the 291 
four-year segments discussed previously. Similarly to the annual amplitude, the largest temporal 292 
variability in the short-term rate is found in the SLR Y and Z components (Figure 4e, f), with a 293 
number of short-term rates significantly different to the rate determined over the full record (grey 294 
line, Figure 4d, e, f). The section of the SLR X and Z components before 1997.0 are distinctly 295 
different from the long-term average, with the Z component almost a factor of three larger than 296 
the long-term mean in this period. Segments in the Y component have differences from the mean 297 
ranging from +0.8 mm/yr to -0.9 mm/yr, and the two segments covering 2005.0 – 2012.0 are 298 
statistically significant from the long-term average. R15 contains contributions from ocean mass 299 
and ice sheets mass that are indirectly affected by the GIA model used, which are not included in 300 
MSM and could explain some of the offset between the rates derived from the two models. 301 

4 Discussion 302 

Our comparison of the SLR translations with respect to the ITRF2014 origin with 303 
network translations derived from equivalently sampled geophysical models shows that it is 304 
likely that signals of non-geophysical origin, with a range of frequencies (monthly to inter-305 
annual) are insufficiently accounted for in the stochastic model of the ITRF2014 origin. Altamimi 306 
et al. [2016] suggested to add annual corrections to the station positions (Eq 2 and 3 in their 307 
paper) in order to bring the network origin closer to the instantaneous CM, as sensed by SLR. 308 
However, if the annual estimates are partly affected by systematic errors in SLR it remains 309 
unclear how these errors will propagate into station positions (and satellite orbits) if the 310 
published annual and semi-annual geocenter terms derived from SLR are applied. 311 

Several studies have examined potential systematic error in SLR, in particular the 312 
influence of the time-variable ground network distribution [Collilieux et al., 2009; Collilieux and 313 
Wöppelmann, 2011], and satellite observation geometry [Spatar et al., 2015] in order to assess 314 
uncertainty. Collilieux et al. [2009] found that the SLR network effect could affect the amplitude 315 
of the annual geocenter motion in the Z direction at approximately 1-mm, depending on the 316 
simulated observing network geometry. We found that the network effect was dominated by the 317 
geophysical models’ annual signal, rather than the network geometry and account for the SLR 318 
network effect by deriving network translations from geophysical models, using only the surface 319 
deformation at those active SLR stations for each epoch. 320 
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Previous studies have explored uncertainty in the data series submitted to the previous 321 
ITRF, ITRF2008 [Altamimi et al., 2011], and found substantial non-linear variation around the 322 
origin [Métivier et al., 2010; Argus, 2012]. Dong et al. [2014] notes an acceleration in the Z 323 
geocenter component of the ITRF2008 origin after 1998, and attributes this to terrestrial water 324 
mass redistribution, including mass loss from continental ice sheets and glaciers. We note the 325 
same feature in our analysis with a clear change in the short-term rate of the SLR Z component 326 
(Figure 4f), but note this is not replicated by MSM, even though MSM and Dong et al., [2014] 327 
both use the GLDAS terrestrial water storage model. We note there are differences in the glacier 328 
and ice sheet mass terms which could explain why the deviation is not present in MSM; the 329 
reason for this discrepancy requires further consideration.  330 

Both the land glacier and dam retention components of the MSM surface mass transport 331 
model have insufficient temporal resolution to capture the annual component of these 332 
constituents. The resolution of surface displacements due to terrestrial water storage changes 333 
remains challenging due to deficiencies in hydrologic models, in particular the long-term trends 334 
and accurate representation of groundwater use. The missing annual hydrologic signal could 335 
explain some of the gap between SLR and MSM, but we note that this signal is included in R15 336 
which also does not agree with SLR in amplitude over a short period.  337 

Others have evaluated the stability of the ITRF2008 origin using statistical and spectral 338 
analysis [Collilieux and Altamimi, 2013; Argus 2012]. These analyses show that a colored noise 339 
model is more appropriate than a white noise-only model, an outcome that we find remains 340 
robust for the ITRF2014 origin. Argus [2012] demonstrated time-variability in both the annual 341 
amplitude and short-term rates of geocenter motion and that the linear CM velocity uncertainties 342 
are ±0.4 mm/yr for X and Y and ±0.9 mm/yr for the Z component (95% confidence limit). Our 343 
findings confirm that a simple linear regression using a white noise-only model will poorly 344 
reflect the true uncertainty of the estimated parameters, with the uncertainty for the linear rate 345 
typically a factor of five smaller than estimates using a PLW noise model (see Table 1 and Table 346 
2). Our analysis of the SLR translations relative to the ITRF2014 origin suggests improvement of 347 
the CM velocity compared with those from Argus, [2012] for ITRF2008. Simply scaling our rate 348 
uncertainties to 2 sigma, the PLW noise model results in a 27% improvement of the SLR Z 349 
component, reducing from ±0.9 mm/yr (95% confidence limit) [Argus, 2012] to ±0.66 mm/yr 350 
(95% confidence limit). 351 

The future improvement of the precision and accuracy of the ITRF origin will depend on 352 
advances in analysis of SLR data and improved network geometry. Indeed, the present SLR 353 
station geometry is sub-optimal, with a concentration of SLR stations in the northern hemisphere 354 
decreasing the precision of the Z component compared to the equatorial components [Bouillé et 355 
al., 2000; Collilieux and Wöppelmann, 2011; Wu et al., 2012]. Otsubo et al. [2016] confirmed 356 
this finding with a simulation study indicating that the addition of a station at low latitudes (15S-357 
30S) would improve the precision of the Z component of the geocenter, and that additional sites 358 
at high latitudes, particularly in the south, would provide an important improvement in the X and 359 
Y geocenter components.  360 

5 Conclusions 361 

We assess the temporal variability of the latest SLR translations with respect to the 362 
International Terrestrial Reference Frame (ITRF2014) origin, and find significant differences 363 
when compared to modeled network translations from two independent surface mass transport 364 
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models. The proportion of variance explained in the SLR origin time series by geophysical 365 
models is on average less than 10% in each component. We identified colored noise in both 366 
observed and modelled network translation time series, but substantial colored noise remains 367 
after subtraction of the model based translations, with notable signal remaining at annual and 368 
longer periods. Consideration of power-law noise when estimating the rate in the origin 369 
components yields an upper bound five-fold increase in rate uncertainty, compared to the white 370 
noise-only case. When using a power-law and white model the uncertainty of the SLR Z 371 
component (0.33 mm/yr; 1 sigma) is twice as large as that of the X and Y components (0.13 and 372 
0.17 mm/yr respectively). This represents a 27% improvement for the Z component of the results 373 
in comparison to those from Argus [2012] for ITRF2008. 374 

Over shorter time-periods, the temporal variability of linear rates computed over four 375 
years suggests that the SLR translations with respect to the long-term ITRF2014 origin cannot be 376 
rigorously represented by a simple linear model over longer periods. For the annual signal, 377 
model based network translations, particularly in the Z component, do not represent the 378 
variability in the annual amplitude of the SLR translations with respect to the ITRF2014 origin. 379 
This indicates that a significant component of the signal is due to other processes, including 380 
likely large systematic error.  381 

 Positioning uncertainty for geophysical applications is likely to be impacted by non-382 
linear geophysical signals of the kind we identify in the SLR translation time series with respect 383 
to the ITRF2014 origin, and may be further impacted when non-geophysical signals exist. Space 384 
geodetic analyses that require an instantaneous CM frame (precise orbit determination for 385 
example) will also likely be affected given the annual geocenter motion model used is derived 386 
from the same SLR data that is used to define the long-term origin of ITRF2014. Further 387 
improvements in SLR data analysis and network geometry are likely required to address this 388 
issue. The demonstration of other geodetic techniques to contribute to the Earth’s center of mass 389 
determination would also be of great benefit.  390 
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Table 1. Noise parameters from HECTOR of the full SLR dataset and MSM network translation 543 
model [1993.0 2015.0]. AIC is a measure of the relative quality of statistical models for a given 544 
set of data; BIC is a criterion for model selection among a finite set of models; the model with 545 
the lowest AIC/BIC value is preferred; k is the spectral index; 1-phi is a GGM parameter; STD is 546 
the standard deviation (units mm). 547 

X 

 SLR MSM SLR-MSM 

model white-only PLW GGM white-only PLW GGM white-only PLW GGM 

AIC 1323.350 1282.103 1256.500 438.639 393.762 392.735 1225.414 1204.903 1198.35 

BIC 1323.350 1289.263 1263.659 438.639 400.921 399.894 1225.414 1212.062 1205.51 

k 0 -0.80 0.98 ± 0.30 0 -0.59 0.62 ± 
0.30 0 -0.50 0.47 ± 0.18 

1-phi   0.51 ± 0.14   0.02 ± 
0.03   0.36 ± 0.19 

STD 2.939 2.689 2.570 0.504 0.5041 0.554 2.443 2.3301 2.303 
bias 
(mm) 

-0.000 ± 
0.181 

-0.197 ± 
2.123 

-0.014 ± 
0.306 

0.005 ± 
0.034 

0.042 ± 
0.173 

0.025 ± 
0.098 

0.001 +/- 
0.150 

-0.102 +/- 
0.602 

-0.003 +/- 
0.229 

trend 
(mm yr-1) 

-0.000 ± 
0.028 

0.017 ± 
0.128 

0.000 ± 
0.048 

-0.001 ± 
0.005 

-0.009 ± 
0.016 

-0.007 ± 
0.014 

-0.005 +/- 
0.024 

0.007 +/- 
0.061 

-0.003 +/- 
0.036 

Y 

AIC 1371.096 1222.215 1192.371 401.992 243.008 225.826 1193.983 1060.86 1064.138 

BIC 1371.096 1229.374 1199.531 401.992 250.167 232.986 1193.983 1068.019 1071.297 

k 0 -0.98 0.98 ± 0.13 0 -0.98 0.77 ± 
0.11 0 -0.94 0.36 ± 0.04 

1-phi   0.29 ± 0.08   0.17 ± 
0.08   0.01 ± 0.01 

STD 3.216 2.391 2.275 0.517 0.3769 0.367 2.302 1.7056 1.786 
bias 
(mm) 

-0.000 ± 
0.198 

-0.451 ± 
8.952 

-0.024 ± 
0.473 

0.008 +/- 
0.032 

0.085 +/- 
1.318 

0.025 +/- 
0.088 

0.001 +/- 
0.141 

-0.374 +/- 
2.525 

-0.218 +/- 
0.567 

trend 
(mm yr-1) 

0.000 ± 
0.031 

-0.027 ± 
0.166 

-0.008 ± 
0.073 

0.000 +/- 
0.005 

-0.007 +/- 
0.026 

-0.002 +/- 
0.013 

0.006 +/- 
0.022 

0.003 +/- 
0.082 

0.002 +/- 
0.069 

Z 

AIC 1761.462 1638.007 1585.610 367.806 318.881 316.801 1626.136 1512.313 1508.971 

BIC 1761.462 1645.166 1592.769 367.806 326.04 323.96 1626.136 1519.473 1516.13 

k 0 -0.93 1.48 ± 0.32 0 -0.66 0.37 ± 
0.07 0 -0.86 0.49 ± 0.07 

1-phi   0.48 ± 0.10   0.05 ± 
0.06   0.05 ± 0.04 

STD 6.717 5.252 4.777 0.484 0.4375 0.436 5.203 4.1494 4.135 
bias 
(mm) 

-0.000 ± 
0.413 

0.637 ± 
9.503 

0.017 ± 
0.871 

0.004 +/- 
0.030 

-0.053 +/- 
0.191 

-0.025 +/- 
0.078 

0.010 +/- 
0.320 

0.892 +/- 
4.456 

0.284 +/- 
1.061 

trend 
(mm yr-1) 

-0.000 ± 
0.065 

-0.044 ± 
0.328 

0.006 ± 
0.135 

0.003 +/- 
0.005 

0.004 +/- 
0.015 

0.003 +/- 
0.012 

-0.014 +/- 
0.05 

-0.077 +/- 
0.223 

-0.026 +/- 
0.156 
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Table 2. Noise parameters from HECTOR of the shortened SLR dataset and R15 network 549 
translation model [2002.3 – 2014.5]. 550 

X 

 SLR R15 SLR-R15 

model white-only PLW GGM white-only PLW GGM white-only PLW GGM 

AIC 717.384 688.717 668.043 205.392 182.117 171.120 635.281 627.398 623.919 

BIC 717.384 694.698 674.024 205.392 188.084 177.087 635.281 633.365 629.886 

k 0 -0.90 1.13 ± 
0.39 0 -0.67  0 -0.47 0.44 ± 

0.23 

1-phi   0.50 ± 
0.16      0.35 ± 

0.26 
STD 2.776 2.464 2.313 0.489 0.443 0.428 2.131 2.043 2.021 

bias (mm) -0.000 ± 
0.229 

-0.008 ± 
3.682 

-0.022 ± 
0.413 

0.026 ± 
0.040 

-0.031 ± 
0.225 

0.022 ± 
0.062 

0.066 ± 
0.176 

0.183 ± 
0.559 

0.072 ± 
0.265 

trend 
(mm yr-1) 

-0.000 ± 
0.065 

-0.014 ± 
0.270 

0.004 ± 
0.115 

0.009 ± 
0.012 

0.012 ± 
0.032 

0.009 ± 
0.017 

-0.101 ± 
0.050 

-0.105 ± 
0.106 

-0.104 ± 
0.075 

Y 

AIC 705.882 646.078 628.424 -20.596 -43.518 -46.146 572.596 551.285 550.747 

BIC 705.882 652.059 634.405 -20.596 -37.551 -40.178 572.596 557.252 556.514 

k 0 -0.93 0.92 ± 
0.19 0 -0.63 0.39 ± 

0.11 0 -0.80 0.29 ± 
0.07 

1-phi   0.31 ± 
0.11   0.12 ± 

0.12   0.06 ± 
0.06 

STD 2.670 2.129 2.020 0.225 0.205 0.204 0.719 1.5286 1.573 

bias (mm) 0.000 ± 
0.220 

0.204 ± 
3.932 

0.043 ± 
0.485 

0.002 ± 
0.190 

-0.001 ± 
0.091 

0.003 ± 
0.038 

0.325 ± 
0.142 

0.357 ± 
0.962 

0.342 ± 
0.291 

trend 
(mm yr-1) 

0.000 ± 
0.062 

0.079 ± 
0.245 

0.022 ± 
0.133 

-0.006 ± 
0.005 

-0.001 ± 
0.014 

-0.004 ± 
0.010 

-0.387 ± 
0.041 

-0.351 ± 
0.109 

-0.368 ± 
0.078 

Z 

AIC 905.651 860.284 832.483 141.685 121.640 112.263 787.566 766.569 764.327 

BIC 905.651 866.265 838.464 141.685 127.607 118.230 787.566 772.536 770.294 

k 0 -0.95 1.33± 0.37 0 -0.63  0 -0.61 0.36 ± 
0.10 

1-phi   0.49 ± 
0.13   0.99 ± 

0.00   0.10 ± 
0.11 

STD 5.267 4.404 4.044 0.393 0.361 0.350 3.590 3.287 3.268 

bias (mm) 0.000 ± 
0.434 

-0.023 ± 
10.493 

0.006 ± 
0.860 

0.002 +/- 
0.033 

-0.017 ± 
0.157 

0.003 ± 
0.048 

0.100 ± 
0.297 

-0.019 ± 
1.337 

0.052 ± 
0.612 

trend 
(mm yr-1) 

-0.000 ± 
0.123 

-0.066 ± 
0.529 

0.032 ± 
0.239 

0.006 +/- 
0.009 

-0.002 ± 
0.024 

0.006 ± 
0.014 

0.239 ± 
0.085 

0.197 ± 
0.214 

0.201 ± 
0.167 

 551 
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Figure 1. SLR translation components and two mass transport models (R15 and MSM). The left 553 
column of panels (a, b, c) are the monthly translation series from SLR [1993.0-2015.0], R15 554 
[2002.3-2014.5] and MSM [1993.0-2015.0] for each component (X, Y and Z); the shaded are is 555 
transformation uncertainty. The right column of panels (d, e, f) show the SLR and differences of 556 
detrended monthly network translation time series for each component where the models have 557 
been subtracted from the SLR time series. Note the differences in scale of the Z component plots 558 
(c, f) versus the X and Y components (a, b and d, e). 559 

 560 

Figure 2. The first row of panels (a, b, c) show the PSD from Lomb-Scargle analysis of the data 561 
from SLR [1993.0-2015.0], R15 [2002.3-2014.5], and MSM [1993.0-2015.0], for each time 562 
series component (X, Y and Z). The second row of panels (d, e, f) show the PSD of the residuals 563 
(data from Figure 1 d, e, f) for each component. Note the differences in scale of the Z component 564 
plots (c, f) versus the X and Y components (a, b and d, e). 565 

 566 

Figure 3. Coherence-squared of SLR translation components with network translations from 567 
surface mass transport models (R15 and MSM). 568 

 569 

Figure 4. Panels a, b and c are annual amplitude and uncertainty of each network translation 570 
component where each dataset has been segmented into four-year segments with one-year 571 
overlap for SLR, R15 and MSM with a PLW noise model. Uncertainties are one sigma. Panels d, 572 
e and f are linear rates and uncertainty with a PLW noise model of the time series (Figure 1d, e, 573 
f). The shaded area is the respective amplitude and linear rate values for the full SLR time series 574 
with one sigma uncertainty [1993.0-2015.0]. R15 and MSM have been offset in time for clarity. 575 
Four-year segments are: 1993.0 – 1997.0, 1996.0 – 2000.0, 1999.0 – 2003.0, 2002.0 – 2006.0, 576 
2005.0– 2009.0, 2008.0 – 2012.0, 2011.0 – 2015.0. 577 

http://onlinelibrary.wiley.com/doi/10.1002/2016JB013698/abstract

	Key Points:
	Abstract
	1 Introduction
	2 Data
	3 Comparison of SLR and modelled network translations
	3.1 Seasonal variation
	3.2 Noise characteristics
	3.3 Time-variable trends
	4 Discussion
	5 Conclusions
	Acknowledgments, Samples, and Data
	References
	Figure 1. SLR translation components and two mass transport models (R15 and MSM). The left column of panels (a, b, c) are the monthly translation series from SLR [1993.0-2015.0], R15 [2002.3-2014.5] and MSM [1993.0-2015.0] for each component (X, Y and...
	Figure 2. The first row of panels (a, b, c) show the PSD from Lomb-Scargle analysis of the data from SLR [1993.0-2015.0], R15 [2002.3-2014.5], and MSM [1993.0-2015.0], for each time series component (X, Y and Z). The second row of panels (d, e, f) sho...

