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Abstract. Weekly ocean bottom pressure anomalies (OBP) are modeled3

using the finite element sea-ice ocean model (FESOM). The model’s OBP4

error, mostly unknown so far, is assessed by comparing two model simula-5

tions, each forced by different atmospheric forcing datasets. The mean es-6

timated error of modeled OBP is found to be 0.04 m per 1.5o
× 1.5o grid7

cell. The error varies strongly from 0.003 m in the equatorial region to 0.318

m in the Weddell and Ross Seas. We believe that the spatial variations of9

the errors are an important improvement over previous error models. The10

new error estimates are implemented in a joint inversion of GRACE grav-11

ity measurements, GPS site displacements and modeled OBP, resulting in12

a larger overall OBP weight in the inversion, most notably in the Polar Re-13

gions. Additionally, the inversion provides a global mass correction term to14

adjust the ocean mass budget of the model. The estimated term is used to15

correct the model’s fresh water balance, making it consistent with GRACE16

and GPS on seasonal and longer time scales. All model results, weekly GRACE17

estimates and the inverse solutions are compared with measurements from18

in-situ bottom pressure recorders. The newly estimated error-model of the19

combination solution results in higher correlations than the previously used20

constant error-model of the combination solution.21
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1. Introduction

Ocean mass variations have been measured only on regional scales before satellite mea-22

surements have become available (e.g. from the Gravity Recovery and Climate Experiment23

(GRACE)). Only since the launch of the GRACE satellites in 2002 has it been possible to24

measure global ocean mass variations directly on a global scale (Tapley et al. [2004]; Bing-25

ham and Hughes [2006]; Dobslaw and Thomas [2007]; Ponte et al. [2007]; Chambers and26

Wahr [2009]; Macrander et al. [2010] and many others). Geopotential Stokes coefficients27

are provided by the three centers that form the GRACE science data system (GFZ, CSR,28

and JPL) and a few others (Bonn University, GRGS Toulouse, and TU Delft). These29

centers use different processing techniques and different temporal resolution, which range30

from daily to monthly estimates. For most applications, the solutions require additional31

filtering to suppress (anisotropic) errors. Different filter techniques have been developed,32

such as the Gauss filter, the pattern filter [Böning et al., 2008], the decorrelation filter33

[Kusche, 2007], or the de-striping filter developed by Swenson and Wahr [2006], and later34

modified by Chambers [2006] for oceanographic signals. A drawback of filtering is that it35

not only reduces the resolution dependent and anisotropic errors [Thomson et al., 2004;36

Seo et al., 2008; Chen et al., 2009], but also the signal under consideration.37

Measurements from ocean bottom pressure recorders (OBPR) have been compared with38

GRACE solutions and modeled OBP on daily and monthly time scales [Kanzow et al.,39

2005; Rietbroek et al., 2006; Park et al., 2008; Böning et al., 2008, 2009; Macrander et40

al., 2010]. GRACE solutions fit reasonably well with in-situ measurements from OBPR41

in the Polar Regions (with correlations mostly higher than 0.5) [Macrander et al., 2010].42
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Park et al. [2008] validated GRACE estimates with in-situ OBP measurements in the43

Kuroshio Extension and showed that GRACE can provide high-quality OBP variations44

on monthly time scales in this region. Morison et al. [2007] found high correlations45

between in-situ bottom pressure measurements and GRACE estimates at two locations46

in the Arctic Ocean near the North Pole. In many other regions the correlation between47

GRACE and OBPR measurements is generally weaker. A particular problem is geocenter48

motion, which cannot be measured by GRACE as the two satellites orbit the center of49

mass of the total Earth system. On the other hand the total ocean mass and thus OBP is50

sensitive to geocenter movements as it is measured relative to the Earth’s crust. This issue51

has been already addressed in earlier GRACE related research [Chambers, et al., 2004],52

and a model-aided geocenter motion correction has later been constructed by Swenson et53

al. [2008].54

Wu et al. [2006] and more recently Wu et al. [2010] estimated global surface mass distri-55

butions up to order and degree 50 on monthly time scales by combining GRACE gravity56

data with GPS displacements and ocean bottom pressure derived from the Estimating57

Circulation and Climate of the Ocean (ECCO) model [Stammer et al., 2002]. The ocean58

circulation model used, had altimetry data assimilated. Wu et al. [2006] assumed a spa-59

tially uniform error for modeled OBP of 1.7 cm for monthly averaged 1o
× 1o grid cells.60

Such an inversion scheme has been investigated by Jansen et al. [2009a], which combines61

GRACE gravity data, GPS site displacements and OBP from the ECCO model to esti-62

mate spherical harmonics coefficients up to degree and order 30 on monthly time scales63

including the geocenter motion. The error of modeled OBP was assumed to be 5 cm,64

which corresponds to the error of the satellite altimetry measurements that are assimi-65
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lated to the model. Initial studies have also been made using the Finite Element Sea-ice66

Ocean Model (FESOM; Timmermann et al. [2009]) instead of the ECCO model [Jansen67

et al., 2009b]. Weekly combinations are constructed up to degree and order 30, which68

use weekly GPS solutions, weekly modeled OBP, and sub-monthly GRACE solutions.69

An uncorrelated error of 5 cm per block-averaged grid cell 5o
× 5o has been assumed for70

modeled OBP.71

GRACE solutions with higher temporal resolution were calculated by Dahle et al. [2008],72

and used in a joint inversion by combining data from GPS, GRACE and FESOM on73

weekly time scales [Rietbroek et al., 2009]. The FESOM model [Timmermann et al., 2009]74

provided modeled OBP as pseudo observations to the inversion. The error of modeled75

OBP from FESOM has been largely unknown and a constant (area weighted) error of 1076

cm for a 1.5o
× 1.5o grid cell was assumed.77

In this study we estimate the OBP error of FESOM and assess its impacts on the es-78

timation of ocean mass redistribution from Rietbroek et al. [2009]. Note that FESOM79

is a pure forward model, i.e. no assimilation of measured data like radar altimetry is80

performed. Among other factors, modeled ocean circulation is highly dependent on the81

atmospheric conditions. Here, the error of modeled OBP is estimated by comparing two82

model simulations using different meteorological datasets as forcing. Ponte et al. [2007]83

estimated a spatially varying OBP error for ECCO by comparing two different ECCO84

model runs. Additionally, they concluded that GRACE data could provide useful large85

scale information to the ocean model on seasonal time scales. We investigate how the86

modeling of the OBP error influences the least squares combination of GRACE measure-87

ments, GPS site displacements and modeled OBP of Rietbroek et al. [2009]. The inversion88
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also provides a mass correction parameter, which is used to optimize the mass balance89

in the FESOM model. Finally, all results are compared with in-situ bottom pressure90

measurements from the AWI database [Macrander et al., 2010].91

2. Model and Methods

2.1. Finite Element Sea-Ice Ocean Model

The finite element sea-ice ocean model (FESOM; Timmermann et al. [2009]) is used92

to simulate ocean mass variations on weekly time scales. It couples the finite element93

ocean model (FESIM; Danilov et al. [2004, 2005] with a dynamic-thermodynamic sea-ice94

model (FESIM; Danilov and Yakovlev [2003]), which simulates the prognostic variables95

sea-ice concentration, sea-ice and snow thickness. The FESOM model is a hydrostatic96

ocean circulation model with spherical geometry, which solves the hydrostatic primitive97

equations. It applies the Boussinesq approximation that simplifies the continuity equation98

and models gravity dependent flows where density variations can be neglected. The99

approximation can be used if vertical velocities are small and density variations have100

only small impacts on other forces. Applying the Boussinesq approximation results in101

conservation of volume. To achieve conservation of mass a correction after Greatbatch102

is applied [Greatbatch, 1994; Böning et al., 2008]. This correction is applied locally at103

every grid point and recovers the steric contribution, which is neglected in the Boussinesq104

approximation.105

The FESOM model uses a triangular grid for spatial discretisation with a resolution of106

1.5 degrees at the ocean surface. The nodes of the 26 z-levels are aligned directly under107

the surface nodes forming a tetrahedral 3D mesh. The nodes of the deepest elements are108

allowed to deviate from the z-level to follow realistic ocean bottom topography [Timmer-109
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mann et al., 2009]. The model is initialized with temperature and salinity of the World110

Ocean Atlas (WOA01) and has a free surface, i.e. it is wind and pressure driven. The111

ocean state is simulated from 1958 to 2002, in order to spin-up the model.112

From 2003 to 2008 weekly means are calculated according to the same weekly increments

used by the GPS and GRACE products. Ocean bottom pressure can be derived by

integrating the simulated density profile of the water column. It is computed as

p(λ, φ, t) =
∫ 0

−H
ρ(λ, φ, t, z) g dz +

∫ h(λ,φ,t)

0
ρw g dz + pa(λ, φ, t) (1)

where H is ocean depth, h is the sea surface elevation, ρw = 1027 kg m−3 the reference113

density of sea water, ρ the in-situ density, g = 9.806 m s−2 the gravitational acceleration,114

pa the atmospheric sea level pressure; λ is latitude, and φ is longitude. OBP anomalies115

are computed by subtracting the multi-year mean at each grid point, and are converted116

to equivalent water height by dividing the anomalies by ρw and g (Figure 1a and 1b). We117

constructed a reference simulation by forcing the model with the atmospheric parameters118

wind at 10 m above the ocean surface, temperature at 2 m above the ocean surface, spe-119

cific humidity, total cloud cover and sea level pressure from the NCEP/NCAR reanalysis120

[Kalnay , 1996]. The fresh water budget is fed by net precipitation, which is computed121

from total precipitation and evaporation, also provided by the NCAR/NCEP reanalysis.122

As the evaporation fields are not directly available in the reanalysis they are computed123

from latent heat flux. River runoff, introduced into the model, originates from the Land124

Surface Discharge Model (LSDM; Dill [2008]). All fresh water fluxes are added into the125

model as daily volume fluxes. The mass balance of these source terms is not in equilib-126

rium [Kalnay , 1996]. To avoid unrealistic trends in the global ocean mass, we followed127

the method of Böning et al. [2008]. Accordingly, a two year high pass filter eliminates128
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trends in ocean mass on longer time scales. Hence, no long-term trends in modeled ocean129

mass variations can be investigated using the reference model setup.130

2.2. Estimation of modeled ocean bottom pressure error

Up to now, the error of modeled OBP anomalies simulated with FESOM has been largely131

unknown. Therefore, several investigations have been performed, such as analyzing the132

influence of spatial discretisation on the model results. A second model simulation with133

a similar grid, but with a smoother topography, has been calculated. The results show134

only minor differences probably due to the relative coarse resolution of the model grid.135

Errors are mainly introduced into the model results by the atmospheric forcing fields, as

they are the major driver of modeled ocean circulation. Additionally, the modeled mass

exchange between atmosphere, ocean, and land is determined by the input parameters,

directly propagating their uncertainties [Kalnay , 1996; Hagemann et al., 2005; Berrisford ,

2009] into the model results. Since atmospheric forcing is the largest error source in the

model results, its uncertainty is estimated by comparing two model runs using different

atmospheric forcing fields (incl. precipitation and evaporation) from the weather forecasts

centers NCAR/NCEP and ECMWF. Daily mean fields of the NCEP reanalysis are used

in the reference model simulation. The alternative simulation is forced by the 6 hourly

ERA Interim reanalysis starting from 1989 [Simmons et al., 2006]. Up to 1989, the model

is forced with the ERA40 reanalysis [ECMWF , 1995; Uppala et al., 2005; Berrisford ,

2009]. The error of modeled OBP, △p , is computed for every week from 2003 to 2008

by calculating the weekly root mean square (RMS) of the difference of daily mean OBP
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anomalies (Figure 1c and 1d),

△p(λ, φ) =

√

√

√

√

1

7

7
∑

d=1

(p̄d
N (λ, φ) − p̄d

E(λ, φ))2 (2)

where p̄d
N are daily mean OBP anomalies modeled with forcing from the NCAR/NCEP136

reanalysis and p̄d
E are daily mean OBP anomalies modeled with forcing from ERA-Interim137

reanalysis.138

2.3. Joint Inversion

The error of modeled OBP is used to weigh the model in the joint inversion, which139

combines modeled OBP from FESOM, GRACE gravity data and GPS site displacements.140

We estimate global surface loading, geocenter motion, and a mass correction, which can141

be used to correct fresh water fluxes in the model [Rietbroek et al., 2009]. The weekly142

inversion is aligned with the GPS week calendar and is calculated for the period 2003 -143

2007 (GPS weeks from 1200 to 1459). The independent datasets are combined by weighted144

least-squares estimation.145

The inversion uses weekly GRACE solutions, which are computed with the same pro-146

cessing standards and background models as the monthly GFZ RL04 solutions [Dahle147

et al., 2008]. Limitations in maximum resolution result from separation of the satellite148

ground tracks and data availability. Therefore, a ground track analysis has been per-149

formed which indicates that optimal solutions are achievable with spherical harmonics150

coefficients of degree and order up to 30 × 30 [Dahle et al., 2008]. GRACE gravity solu-151

tions are used for the period from GPS weeks 1200 to 1459 (January 2002 until December152

2007). Only, seven weeks are missing (GPS weeks 1220-1223 and 1253-1255) because of153

erroneous GRACE level 1b data. For this reason, the inversion has not been performed154
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during those time periods. The error of weekly GRACE estimates (Flechtner et al. [2010];155

Figure 1e) mostly originates from resolution dependent errors as well as from aliasing.156

Aliasing effects describe the errors in the short wavelength signals (high degree spherical157

harmonic coefficients) and result in striped mass estimates [Swenson and Wahr , 2006].158

Therefore, filtering is needed, which not only corrects for the stripes but also influences the159

geophysical signal. In addition, leakage effects occur because land signals are mixed with160

ocean signals near coast lines. This effect is prevalent in regions of strong variations in land161

hydrology, like the Amazonas. The weekly GRACE solutions are not filtered before they162

are used in the inversion. Additional uncertainties are introduced by using external data163

for postglacial rebound, atmospheric pressure and the geocenter motion when computing164

ocean mass variations [Quinn and Ponte, 2010]. The GRACE solutions used in this study165

do not include geocenter motion, due to the limited capability of estimation with GRACE.166

The movement of the geocenter influences the estimation of global ocean mass and thus167

OBP. To solve this issue, and to increase the correlation of ocean mass variations with168

OBPR, the joint inversion provides estimates of geocenter motion constrained by GPS169

site displacements [Blewitt , 2003].170

Weekly files of Solution Independent Exchange format (SINEX) from globally dis-171

tributed International Global navigation satellite system Service (IGS) stations are used172

to process time series of station displacements including their error-covariance matrix.173

The results are expressed in spherical harmonics of surface loading mass using methods174

described by Kusche and Schrama [2005]. During an extensive preprocessing several sta-175

tions are removed, e.g. because of discontinuities in time and to avoid time series shorter176

than 1 year. The remaining number of stations amounts to 150-200 per week. The spa-177
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tial resolution of this dataset is limited to thousands of kilometers as GPS stations are178

not evenly distributed over the Earth, i.e. varying density and heterogeneity [Jansen et179

al., 2009a]. Within the inversion scheme, GPS displacements mainly contribute to the180

detection of degree 1 deformation, which can be linked to the geocenter motion, and the181

estimation of long wavelength surface loading.182

In the first inversion, an uncorrelated modeled OBP error of 10 cm is assumed for every183

1.5 × 1.5 degree grid cell, which is scaled with 1/cos(latitude), to mitigate the effect of184

decreasing area at the poles. To investigate how the error of modeled OBP influences185

the inverse solution, a second inversion is computed where the assumed constant error is186

replaced by the error estimated from equation 2.187

The global mass correction parameter, derived by the inversion, is used to improve

the fresh water budget of FESOM. This is needed because modeled global mean ocean

mass variations directly result from the input parameters from NCEP (precipitation) and

the LSDM model (river runoff). Hence, all uncertainties included in these parameters

are directly reflected in the model results. In addition, the high pass filter, applied to

the mass budget of the model simulation, induces an incapability to analyze long term

trends of modeled global mean mass variations. Within the inversion, the mass correction

parameter is defined as a uniform layer, which allows for the estimation of the offset

between the modeled mean ocean mass and the GPS and GRACE datasets. Therefore,

the modeled global mean ocean mass does not affect the inversion results. It is derived

from the GPS measurements and the GRACE estimates. The correction obtained from

the inversion can now be again introduced into the model as the scaling factor β, which
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varies the precipitation by the amount of the mass correction term (eq. 3).

β = 1 −
△M

P
(3)

where P is global weekly integrated precipitation and △M is the mass correction term.188

In the model, the precipitation fields are multiplied with β and a subsequent model189

integration is performed.190

3. Results

3.1. Modeled ocean bottom pressure and its error

The modeled weekly variations in OBP (Figure 1a) reach amplitudes up to 0.08 m191

regionally. For example, the wind driven oscillation in the North Pacific Ocean is clearly192

visible. Furthermore, strong variability occurs in the Southern Ocean, with strongest193

signal west of the Drake Passage, where the OBP signal is highly dependent on the194

bottom topography (Figure 1b). Short term variations occur in the Arctic Ocean, which195

generally responses uniformly to varying wind and atmospheric pressure fields. Also semi-196

enclosed seas, like the Mediterranean Sea and the Hudson Bay, show high variability due197

to their sensitivity to changes in the model configuration. Generally, OBP variations are198

high in regions of strong ocean currents, such as the Kuroshio, the Antarctic Circumpolar199

Current, and the Gulf Stream. In other regions in the open ocean, variability of OBP is200

relatively moderate.201

The mean error of modeled OBP, as obtained from the difference between the two model202

runs, is 0.04 m per 1.5o
× 1.5o grid cell and varies strongly with location. The weekly203

error maps show similar geographical patterns, varying in order of magnitude of mm. For204

example, the error for week 1400 (the first full GPS week in January 2003) ranges between205
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0.003 m in the open ocean near the equator and 0.31 m in the Weddell and Ross Seas206

(Figure 1c). An error of about 0.1 m is found in the Southern Ocean west of the Drake207

Passage, which originates from differences in the wind fields of the atmospheric datasets.208

The Arctic Ocean also appears to be sensitive to perturbations in forcing fields, which209

result from the relatively low spatial resolution in north-south direction. Larger errors210

occur in the Norwegian Sea and near the east coast of Canada, where the model shows211

some weakness in the ocean circulation.212

The RMS of the differences between the model runs indicates higher deviations in the213

Southern Ocean because of the strong Antarctic Circumpolar Current (Figure 1d). In214

regions which are not well connected to the open ocean, such as the Mediterranean Sea215

and the Hudson Bay, the model is also sensitive to small changes in atmospheric conditions.216

The regional distribution of the error corresponding to the GRACE estimates [Flechtner217

et al., 2010] mainly reflects the error due to the aliasing effect, which is strongest in the218

equatorial region and displays no geographical patterns (Figure 1e). In the polar region219

the error reduces due to the denser GRACE ground tracks. Note that in most regions the220

error of modeled OBP is smaller than the error of the GRACE estimates, but modeled221

OBP anomalies also show less temporal variations compared to ocean mass variations222

estimated from GRACE (Figure 1f).223

Relatively large differences occur among the two model runs in the variations of modeled224

global mean ocean mass (Figure 2a). This is due to significant differences between pre-225

cipitation and evaporation estimates from both weather forecasting centers, however, the226

seasonal cycles are in phase. The amplitude of the simulation using atmospheric param-227

eters from the ERA Interim reanalysis is lower and decreases in 2007. As expected, both228
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time series show similar structures in short-term variations as both atmospheric datasets229

are optimized for short term forecasting and are, therefore, well defined in its short term230

variations.231

The estimated error of modeled OBP does not include all possible error sources, such232

as uncertainties in river runoff input fields or uncertainties arising from the numerics in233

the model. In addition, the model results suffer from the low spatial resolution, i.e. error234

estimates caused by missing small scale features like eddies are not taken into account.235

Correlated errors of the atmospheric forcing fields might exist, as they use overlapping236

input data. Hence, some error in the input data might result in similar errors in the atmo-237

spheric forcing fields, which would be canceled out when computing differences between238

the two FESOM model results. However, as the atmospheric forcing mostly uses the239

same input data, the differences in the provided forcing fields mostly result from different240

processing strategies. These differences can be directly related to uncertainties in the241

atmospheric parameters. Using two model simulations, forced by different atmospheric242

input, enables the estimation of error maps. These show regional patterns, which can be243

related to geophysical features. For example, higher errors appear in the Arctic Ocean244

where modeled ocean circulation might not be trusted, as a small Island is included into245

the model grid to overcome the problem with resonances at the North Pole. Also the246

error at the East Canadian coast and in the Norwegian Sea is higher than average. Here,247

the model has some difficulties to optimally simulate horizontal velocities. Overall, the248

error of modeled OBP gives a reasonable temporal and regional varying estimate and is a249

much better representation of the error than a globally uniform error assumption, which250

is constant over time.251
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3.2. Influence of modeled OBP error on the inverse solution

To investigate the influence of the modeled OBP error on the inverse solution, the252

inversion has been performed (1) with a constant error of 10 cm per 1.5o
× 1.5o grid253

cell and (2) using the modeled OBP error estimated in this study. For each week an254

error map is provided which shows in most regions a consistently smaller error than the255

previously assumed constant error. Only in some regions higher errors occur, such as in256

the Southern Ocean, west of the Drake passage. Introducing the varying error into the257

inversion increases the overall weighting of modeled OBP in the least squares estimation.258

The smaller the error of modeled OBP, the closer is the inverse solution to the model259

results.260

Almost no differences in global mean ocean mass variations are introduced by the al-261

ternative error estimation of modeled OBP (Figure 2b). In GPS week 1202, the inverse262

solutions show a large offset in the ocean mean. This feature can be linked to the large263

amount of GRACE data gaps during that week combined with a different OBP error264

model. This means that OBP modeled with FESOM might strongly influence the inverse265

solutions, when the uncertainty of GRACE solutions is high.266

The influence of the newly estimated error model on the mass correction term is small267

(Figure 2c). Including the mass correction term as part of the model forcing reduces the268

amplitude of the modeled global ocean mass variation to values similar to those from269

the inversion (Figure 2d). Once the model has been calibrated with the mass correction270

parameter, the difference with the inverse solution is small. The remaining discrepancy is271

most likely due to the band-limited nature of the inverse solution, which is not uniquely272

consistent with the spatial domain in which the ocean model acts. The seasonal phase273
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of the FESOM mean ocean mass variations coincides well with GRACE and the inverse274

solution. Modeled OBP and the weekly GRACE solutions show realistic signal structures,275

when comparing them with the two inverse solutions (Figure 2e).276

Adding the error of modeled OBP to the inversion results in inverse solutions (Figure 3a277

and 3b) having less temporal variations, mainly in the polar regions as depicted in Figure278

3c and 3d. In both inverse solutions, higher variations occur in high latitude coastal279

regions and are most likely caused by leakage of land signals.280

3.3. Validation with in-situ measurements

Measurements from OBPR at 100 locations distributed over the world ocean have been281

collected by several studies (Kanzow et al. [2005]; Morison et al. [2007]; Park et al. [2008],282

and others) and are assembled in a database [Macrander et al., 2010]. We compared283

these measurements with the modeled weekly OBP anomalies, weekly GRACE measure-284

ments, and ocean mass variations from the two inverse solutions. We have computed285

the correlations and the RMS differences of the time series and OBPR data for different286

locations.287

Modeled OBP and GRACE estimates generally show a good correlation with OBPR288

data but vary by region (Figure 4a and 4b). The correlation of modeled OBP is much289

higher (about 0.2) at the Kuroshio, at the South Drake Passage and in the Atlantic Ocean290

east of the Caribbean Sea (e.g. the array of the Meridional Overturning Variability Exper-291

iment (MOVE)) compared to GRACE estimates. Both estimates show high correlations292

with OBPR data in the Arctic Ocean and in the Southern Ocean, near the Kerguelen293

Islands, and low correlations at the Azores and the North Drake Passage. Correlations of294

GRACE with OBPR data are higher than FESOM with OBPR data at the Fram Strait295
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and in the North Pacific, with a few exceptions. Note, that the applied Gauss filter in-296

fluences the correlation between GRACE and OBPR data. Here, an averaging radius of297

750 km [Wahr et al., 1998] is chosen as it shows highest correlation for most timeseries.298

The estimation of mass signals can be improved by combining different datasets, shown299

in Figure 4c. This is especially true for the MOVE array (Atlantic Ocean east of the300

Caribbean Sea), which is known to have low correlation compared with GRACE only301

solutions [Kanzow et al., 2005]. Concerning the inverse results, a further increase of corre-302

lation is achieved when introducing the variable error of modeled OBP into the inversion303

as modeled OBP better represents the short term structures in OBPR measurements (Fig-304

ure 4d). This particularly holds for the locations in the North Pacific (near Bering Sea),305

the cross section of the Antarctic Circumpolar Current (ACC) south of Africa, and the306

Kuroshio. Generally, the correlation of the inverse solutions with OBPR measurements307

strongly depends on the weighting of the individual datasets. If a dataset is highly corre-308

lated with OBPR data, but has a low weighting due to high uncertainties, the weighting309

becomes lower and some of the signals from this datasets may be damped in the inverse310

solution.311

The influence of the weighting on the combinations of different data sets is also visible312

in Figure 5. Even with a constant error of modeled OBP, the inverse solution shows a313

higher correlation with OBPR measurements compared to the GRACE-only solutions at314

many positions. At some positions, however, the correlation decreases, e.g. the ACC315

crossing south of Africa. This is largely corrected when the estimated error of modeled316

OBP is applied. Compared to GRACE data, the correlation with OBPR data is increased317

by up to 0.5. Compared to the inversion with constant model error, the correlation with318
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OBPR data increased in all but three positions. Due to the high amount of deployments,319

the OBPR measurements at the Kuroshio Current are not included here, as they would320

distort the analysis.321

Time series of the inverse solutions, modeled OBP, and weekly GRACE solutions322

(GSM+GAC) are compared with OBPR data at three example locations; one in the323

Southern Ocean and two in the North Atlantic (Figure 6 and 7a). Generally the short324

term signal structure is best represented by FESOM as most positions are more highly325

correlated with the OBPRs than for GRACE estimates. In contrast, the seasonal vari-326

ations, which are not well modeled in the FESOM results, are captured in the GRACE327

solutions. The inverse solutions using the estimated variable error of modeled OBP has328

the best agreement with the temporal mass signal measured with OBPRs. The errors of329

GRACE and modeled OBP optimally trade off the advantages of both input data sets.330

Hence, this inverse solution represents both large scale variability and displays good cor-331

relations with OBPRs. This does not hold for the Arctic Ocean (see figure 7b). At this332

location, the mass signal of the inverse solution (including the variable error) is much less333

correlated to OBPRs than the signals of GRACE measurements and modeled OBP. Here,334

the inverse solution is not optimal, which indicates that there is still some potential for335

improvement, e.g. of the weighting scheme of the inversion.336

In addition, we have calculated the RMS differences of our estimates minus the in-situ337

time series. The results confirm those found from the correlation analysis earlier. Figure338

8a and 8b show the RMS between modeled OBP anomalies and GRACE estimates minus339

the measurements from the OBPRs. At many locations, modeled OBP shows a lower340

RMS difference with OBPRs than with GRACE estimates, for example in the equatorial341
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Atlantic Ocean where GRACE overestimates the variance of the signal. At these locations342

ocean mass variations are better estimated with the FESOM model. There are also many343

locations where the RMS differences of modeled OBP and GRACE estimates are similar,344

for example in the Southern Ocean south of Africa or at the Kerguelen Island. However,345

at some locations, such as in the Fram Strait or the Arctic Ocean, the RMS difference346

of the GRACE estimates indicate a better agreement in amplitude. At most locations,347

the residual RMS of the two inverse solutions show a better agreement in amplitude as348

compared to the GRACE estimates (Figure 8c and 8d). Only in the Arctic Ocean, the349

GRACE estimates show a lower residual RMS compared to the inverse estimates, and the350

inverse solutions also show poorer correlation.351

The residual RMS of the inverse solution shows a slight improvement at almost all352

locations when the new OBP error model is used (Figure 9). Only one location south353

of Africa (AWI ANT3) shows higher residual RMS with the incorporation of the new354

OBP error model, as compared to when the constant error of modeled OBP is used. The355

poorer performance of the modeled OBP anomalies at this location is due to the strong356

variability caused by small scale eddies, which are not resolved by the coarse resolution357

of the model.358

The differences between modeled OBP and OBPR measurements give an indication of359

the real error at these locations. A comparison of these errors to our perturbation-based360

error estimate reveals that they are of very similar magnitude (Figure 10). Generally the361

difference is located within the estimated error boundaries. At some positions the error362

is slightly overestimated, e.g. in the Mid Atlantic Ocean. Variability of the model error363

estimate is small. As expected, the difference sometimes exceeds the error estimate for364
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a short time period, because of the stronger fluctuations of the short term signals in the365

OBPR measurements, but at least 84 % of the data remains within the estimated error366

boundaries (in mean 80 % of data remains at Kuroshio current).367

4. Discussion and Conclusion

Weekly ocean mass variations, derived from the mass conserving FESOM model, show368

realistic geophysical patterns. However, no assimilation of altimetry data is performed369

within the FESOM model. Therefore, the error of modeled OBP derived by the FESOM370

model cannot be estimated on the basis of the error of the altimetry measurements as371

described by Wu et al. [2006]. It is known that the model results largely depend on372

the atmospheric conditions. For this reason, the error of modeled OBP is estimated373

by computing the differences between a second model simulation using an alternative374

atmospheric forcing field and the reference model simulation. The results include error375

maps which vary in time and space. Although the estimated error of modeled OBP does376

not include all possible error sources, it provides a realistic estimate with larger errors in377

regions where atmospheric conditions are uncertain, such as in the Southern Ocean west378

of the Drake Passage. In addition, in the Arctic Ocean and the Norwegian Sea the error379

is larger than average. In the open ocean the error of modeled OBP is about 4 cm, which380

is smaller than the more conservative assumed constant error of 10 cm as used in the381

first inversion. Overall the estimated error of modeled OBP displays geophysical patterns382

based on differences in atmospheric conditions, which makes it more realistic than an383

assumption of constant errors as used by Rietbroek et al. [2009]; Wu et al. [2006].384

The joint estimation of mass redistribution of GRACE gravity data, GPS site displace-385

ments and modeled OBP highly depends on the weighting and therefore on the error386
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estimation of the individual data sets [Rietbroek et al., 2009]. By combining the different387

datasets, the estimation of ocean mass variations improved in many regions especially in388

the equatorial Atlantic Ocean where the correlation between OBPR data and GRACE389

measurements is quite low. In these locations, GRACE generally overestimates the vari-390

ability of mass variations [Kanzow et al., 2005]. Correlation and RMS difference are391

improved at many locations by introducing modeled OBP into the inversion as FESOM392

performs well on short term mass variations. GRACE is well suited to represent large-393

scale ocean mass variations on weekly time scales, which improves the representation394

of the seasonal variability of ocean mass in the inverse solutions. The inverse solution395

strongly depends on the weighting of the different input variables by their error estimates396

[Wu et al., 2006; Jansen et al., 2009a; Rietbroek et al., 2009]. Introducing the estimated397

variable error of modeled OBP into the inversion further increases the correlation and398

lowers the RMS difference between ocean mass variations derived by the inversion and399

measurements from OBPR. Therefore, using the time- and space dependent error in a400

joint inversion of independent data sets improves the estimation of ocean mass changes.401

The mass budget of the FESOM model directly depends on the forcing parameters:402

precipitation, evaporation, and river runoff. These forcing data generally arise from mod-403

els which do not conserve mass, and which are therefore not consistent with each other.404

Consequently, their errors, arising from both the assimilated data and the model itself,405

propagate as large uncertainties in the ocean models [Kalnay , 1996; Hagemann et al.,406

2005; Berrisford , 2009]. This results in an unrealistic long term trend and high uncer-407

tainties in the mass budget of the model, which should be treated with caution. However,408

the comparison between other studies [Chambers, et al., 2004; Wu et al., 2006; Wenzel409
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and Schröter , 1998; Willis et al., 2008], the inverse solutions, and the model results show410

that simulated weekly global mean ocean mass variations have similar phase, only the411

modeled amplitude is slightly overestimated. This can be improved by introducing the412

mass correction term from the inversion into the model, as a scaling to precipitation.413

This correction adjusts the modeled mass budget to the one of the inverse solution, and414

therefore gives the possibility not only to analyze modeled ocean mass variation, but also415

to investigate long term trends as soon as longer time series are available.416
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R. Timmermann (2009), Changes in total ocean mass derived from GRACE, GPS, and526

Ocean Modelling with weekly Resolution, Journal of Geophysical Research (Oceans),527

144, C11004, doi: 10.1029/2009JC005449.528

Seo, K.-W., C. R. Wilson, J. Chen, D. E. Wilson (2008), GRACE’s spatial aliasing error,529

Geophys. J. Int. 172, 41-48 doi: 10.1111/j.1365-246X.2007.03611.x.530

Swenson, S. C. and J. Wahr (2006), Post-processing removal of correlated errors in531

GRACE data, Geophysical Research Letters, 33, L08402, doi: 10.1029/2005GL025285.532

Swenson, S, C. Chambers, and J. Wahr (2008), Estimating geocenter variations from a533

combination of GRACE and ocean model output, Journal of Geophysical Research, 113,534

B08410, doi: 10.1029/2007JB005338.535

Simmons, A., S. Uppala, D. Dee, and S. Kobayashi (2006), Era-interim:536

New ecmwf reanalysis products from 1989 onwards, ECMWF Newsletter, 110,537

http://www.ecmwf.int/publications/newsletters/pdf/.538

Stammer, D., C. Wunsch, I. Fukumori, and J. Marshall (2002), State estimation in modern539

oceanographic research, EOS, Transactions, American Geophysical Union, 83, 27, 294-540

295, 289.541

D R A F T May 20, 2011, 9:10am D R A F T



X - 28 BRUNNABEND ET AL.: MODELLING OBP UNCERTAINTIES

Tabley, B., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and542

climate experiment: Mission overview and early gravity results, Geophysical Research543

Letters, 31, L09607, doi: 10.1029/2003GL019920.544
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Wenzel, M., and J. Schröter (2007), The global ocean mass budget in 1993 -563

2003 estimated from sea level change, Journal Physical Oceanography, 37, 203-213,564

D R A F T May 20, 2011, 9:10am D R A F T



BRUNNABEND ET AL.: MODELLING OBP UNCERTAINTIES X - 29

doi:10.1175/JPO3007.1.565

Willis, J. K., D. P. Chambers, and R. S. Nerem (2008), Assessing the globally averaged566

sea level budget on seasonal to interannual timescales, Journal of Geophysical Research,567

113, C06015, doi:10.1029/2007JC004517.568

Wu, X., M. B. Heflin, E. R. Ivins, and I. Fukumori (2006), Seasonal and interannual569

global surface mass variations from multi-satellite geodetic data, Journal of Geophysical570

Research, 111, B09401, doi:10.1029/2005JB004100.571

Wu, X., M. B. Heflin, H. Schotman, B. L. A. Vermeersen, D. Dong, R. S. Gross, E. R.572

Ivins, A. W. Moore, and S. E. Owen (2010), Simultaneous estimation of global present-573

day water transport and glacial isostatic adjustment, Nature Geoscience, 3, 642-646,574

doi:10.1038/ngeo938.575

D R A F T May 20, 2011, 9:10am D R A F T



X - 30 BRUNNABEND ET AL.: MODELLING OBP UNCERTAINTIES

Figure 1. Modeled OBP anomalies and its error in meter equivalent water height (a): OBP

anomalies of week 1400 (05th-11th November 2006) using NCAR/NCEP forcing, (b): Standard

deviation of weekly mean OBP anomalies using NCAR/NCEP forcing (time range: 2003-2007),

(c): Modeled OBP error of week 1400, (d): Variations of local mean error of modeled OBP (time

range: 2003-2007), (e): Error of GRACE estimate of week 1400, and (f): Standard deviation

of weekly mass anomalies estimated from GRACE where a 750 km Gauss filter is applied (time

range: 2003-2007); note that off-scale values are colored black

Figure 2. Weekly global mean ocean mass anomalies in equivalent water height (a): Mod-

eled OBP forced by different atmospheric datasets (b): Inverse solutions (c): Mass correction

terms (d): OBP modeled with improved fresh water cycle (mass correction term applied) (e):

Comparison with GRACE (GSM+GAC, 750 km Gauss filter applied)

Figure 3. Inverse solutions in meter equivalent water height (a): Inverse solution using constant

error of modeled OBP of week 1400 (05th-11th November 2006), (b): Inverse solution using

variable error of modeled OBP week 1400 (05th-11th November 2006), (c): Standard deviation of

inverse solution for weeks 1204 to 1459 using constant error of modeled OBP, and (d): Standard

deviation of inverse solution for weeks 1204 to 1459 using variable error of modeled OBP

Figure 4. Correlation with in-situ bottom pressure (OBPR) for (a): Modeled OBP (FESOM

forced with atmospheric data from NCAR/NCEP), (b): GRACE solution GSMGAC (750 km

Gauss filter applied), (c): The inverse solution using constant error of modeled OBP, and (d):

The inverse solution using variable error of modeled OBP; if the correlation is significant at a

location (on a 95% significant level), the position is marked with a bold black circle.
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Figure 5. Histogram of the differences between correlations with OBPR measurements and

(a): Inversion (constant OBP error applied) and weekly GRACE (750 km Gauss filter applied),

(b): Inversion (variable OBP error applied) and weekly GRACE (750 km Gauss filter applied), as

well as (c): Inversion (variable OBP error applied) and Inversion (constant OBP error applied)

Figure 6. Comparison of ocean bottom pressure timeseries with OBPR data at location (a):

MOVE M3 (Atlantic Ocean, east of the Caribbean Sea) (b): POL SD2 (South East of the Drake

Passage)

Figure 7. Comparison of ocean bottom pressure timeseries with OBPR data at location (a):

RAPID MAR3 (Mid Atlantic Ocean) and (b): mean of station ABPR1 and ABPR3 (Arctic

Ocean)

Figure 8. Root mean Square of differences of in-situ bottom pressure measurements and

(a): GRACE (GSM+GAC, 750 km Gauss filter applied), (b): Modelled OBP, (c): The inverse

solution using constant error of modeled OBP, and (d): The inverse solution using variable error

of modeled OBP

Figure 9. Histogram of the root mean square differences between correlations with OBPR

measurements and (a): Inversion (constant OBP error applied) and weekly GRACE (750 km

Gauss filter applied), (b): Inversion (variable OBP error applied) and weekly GRACE (750

km Gauss filter applied), as well as (c): Inversion (variable OBP error applied) and Inversion

(constant OBP error applied)

Figure 10. Comparison of modeled OBP error (red) with the difference of modeled OBP and

OBPR measurements (blue) for locations (a): KESS E7 (Kuroshio), (b): AWI F8 (Framstrait),

MOVE M3 (Atlantic Ocean, east of the Caribbean Sea) , and CNES AMS (near New Amsterdam,

about 10o north-east of the Kerguelen Islands)
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